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Introduction



Linear Contextual Bandits (LCB)

O Foreachtimet=1,...,T

prescribed medicine

(P ar), y,)
.1. Observe COnteXt Ct yt n rﬂ‘ .................................... y ............ > E
© or® Q

2. Prescribes action q,

Known feature map Noise age, medical history...

/
3. Receive reward y, = (¢(c,, a,), ") + €,
N

Unknown R4 vector

4. Update model ‘

O The goal is to minimize regret
T

Reg(T) = Y [maxw*, b(c.a)) = (0%, d(cna))
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Privacy Risk

O Both context and reward are sensitive information &

A new diabetes treatment

o Standard LCB could reveal these information .,

* Bob has diabetes and health app often prescribes @D

age, medical history...
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hmm...after Alice
uses the app, it starts
to prescribe

e [f Bob knows Alice is the most recent user

e Bob’s belief that Alice has diabetes increases

age, medical history (diabetes)...



Differentially Private LCB

Central model

o Differential Privacy (DP) provides formal privacy guarantee

. : . . @
o Well-tuned noise added to obscure each user’s contribution et P {-\‘5
o T Plcpay) o
A —

o |n LCB, central server updates model with injected noise

- Gaussian noise with variance 6> = O(log(1/5)/¢?) A9 a).niz,, #(0.0%)

e Smaller €, 0, stronger privacy but worse regret

© Privacy vs Regret. shows that

- T(log(1/6))"*
Regret O (\/_( og(1/9)) ) under central (¢, 0)-DP*
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Another Privacy Risk

O Both context and reward are sensitive information
o What if central server is not trustworthy??

o Will it follow the right DP mechanism...?

o Will it use my dgata for other use cases...?

o Will it be attacked by an adversary...?
O Hence, users may not bé willing to share their raw data

» Context via ¢(c,, a,)

* Reward y,

Not Trusted...




Differentially Private LCB

Local model

O Each user injects noise before sending data

* By post-processing, local DP implies central DP

o |n LCB, each user applies local randomizer R
- Gaussian noise with variance o> = O(log(1/5)/¢?)

e Smaller €, 0, stronger privacy but worse regret

© Privacy vs Regret. shows that

" (log(1/8))"*

Regret 0( ) under local (¢, 0)-DP*
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Can one achieve a better regret even without a trusted server?

Yes!



Contribution
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2.

3.

output is (€, 0y) private, €, >> €,y > 0
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Shuffler: S
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output is already (€, o) private (shuffle privacy - SDP)
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Not Trusted...

additional randomness “amplify” privacy

Propose a generic private LCB algorithm with black-box protocol P = (R, S, A)

Two instantiation of P guarantee shuffle privacy with regret 5(T3/ : )

For the case of returning users, our regret can match the one under central model, i.e, 5(T2/ 3)

*Shuffler’s figure borrows from [Cheu et al. 2019]



Related Work

Shuffle DP protocols & app. in SGD

o Shuffle DP protocols

* Practical system

» Shuffle protocols for bounded sum

- Sum of n numbers in [0,1], shuffler enables (€, §)-SDP with error O(1/¢€)

* General “privacy amplification” bounds
- Shuffling of n €4-DP locally randomized data, yields (€, 0)-SDP with € = @(60/ )ifeg < 17

o Applications in private SGD
 Both ERM and SCO

- Shuffler enables SDP with the same convergence rate as in central DP

11



Related Work

Shuffle DP in bandit learning

o Shuffle DP in MAB

* A batch-variant arm elimination algorithm

K log T\/log(1/5)

€

« Guarantee (¢, 0)-SDP with additive privacy cost

. Central (¢,0)-DP — additive cost £°¢7: [ ocal (¢,0)-DP — multiplicative factor 1/¢?

€

o Shuffle DP in linear contextual bandits
* |n addition to rewards, contexts also need protection
 One concurrent and independent work

- More complicated algorithm; A gap exists in their regret analysis™

- The shuffle privacy guarantee only holds for € << 1

12 *Will be discussed in detail later



Background



Shuffle Differential Privacy
Standard SDP

© Neighboring datasets. D, D’ € 9" are neighboring if they only differ in one user’s data D.

Def. Differential Privacy [Dwork et al. 2006]

For ¢, 5 > 0, a randomized mechanism /M satisfies (€, 5)-DP is for all neighboring datasets D, D’ and all events £ in the range of M

PIM(D) el <e -PM(D")e&l+0

o Standard shuffle DP. The output of the shuffler is private, i.e.,(SoR") :== S(R(D1), ..., R(Dn))

Def. Shuffle Diff. Privacy [Cheu et al. 2019]

Let P = (R, S, A) be a protocol for n users. Then, P satisfies (¢, 0)-SDP if the mechanism (S ¢ R") satisfies (e, 0)-DP

©  Recall that shuffling amplifies privacy by \/5

14



Shuffle Differential Privacy
SDP in Bandits

© Divide users into batch. Run a standard protocol for each batch m € [M ] with size n,,
o Composite mechanism. Mp = (SoR"™,...,SoR"M)

« Each(S o R"™)operates on n,, users’ data "

» Each data point in LCB is (¢(c;, a;), ;)

Def. SDP in Bandits

An M-batch shuffle protocol P is (€, 5)-SDP if Mp satisfies (€, §)-DP

2 If users are unique, it suffices to show each (S o R") satisfies (¢, 5)-DP\
W

This is assumed in all previous private bandit works. We will discuss how to handle returning users later by simple parallel-composition

15



Our Algorithm



A Generic Private LINnUCB

lllustration




A Generic Private LINnUCB

Initialize: batch size B, statistics V| = A1, uy = 0, initial parameter estimate éo =0
Forlocalusert=1,..., T do

// user-app interaction

Observe user context ¢, and prescribes action via a¢ € argmax(¢(ct, @), Om—1) + Bm—1 [|[¢(ce, a)lly -1
cX m—
User generates reward y, :

// local randomizer
Send randomized messages M, | = R,(¢(c,, a,)y,) and M, , = R(¢(c,, a)Pp(c,, a)") to the shuffler

If t = mB then
// shuffler

Set batch end-time 7, = ¢

Randomly permutes per-batch messages and send to central server, ¥, ; = S;(1M,;},  41<;< )51 = 1,2

// central server

Compute per-batch statistics #,, = A{(Y,, ;) and V. = Ay)(Y,, )

Update statistics u, =u,_+i,andV =V  +V_

Update estimate ém — anllum, send new model (é’m, V) to users and increase m = m + 1



SDP via LDP Amplification



Amplification of Gaussian Mechanism
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Performance

SDP via Amplification

Theorem

Fix batch size B and ¢ e (0,\/

O

O

O

» LDPith ¢ = e\/B

>. Let local Gaussian mechanism choose noise ¢, = 5(1/(6\/§)). Then we have

log(2/5)
B

(Privacy) Our algorithm is O(e, 6)-SDP

~ T3/5
(Regret) Set B = O(T3/5), with a high probability, our algorithm achieves (—)

€

& Achieve a better regret vs. 0(T3/ 4) under local model without a trusted server

© Minimal modification on existing private algorithms, i.e., batch + shuffler

@ Privacy guarantee holds only for small ¢ << 1
& Continuous privacy noise, difficulty on finite computers and even privacy leakage [Kairouz et al. 2021, Mironov et al. 2012]

& Communication of real numbers



SDP via Vector Sum



Shuffle Bounded Sum

Introduction

© Problem. Given 1 numbers within [0,1], private sum with error O(1/¢€), no trusted server?

o A shuffle protocol. P = (R, S, A) proposed in

« Randomizer — fixed-point encoding + random rounding + Binomial noise

- & only discrete noise + bit communication

e Shuffler — randomly permute a bunch of bits

* Analyzer — aggregate bits with simple de-bias operation

24



Shuffle Bounded Sum

lllustration Pip = (R, S, A)

x; =053 -
X, =027 -
R Parameters: g,b,n
X xXx=|xg|] x=Xx+y, X+ (g + b) bits
—
x, =098 -» [0 O] ~» Q . ~ 10=9+1 —~ 10+5 - (111...000...) ~}-»

l l l

Fixed-point encoding Random rounding

Binomial noise

X+ 7y, are1else0

with g = 10 ¥ ~ Ber(xg — Xx) ¥>» ~ BIn(b, p)
Is this private?
— A Parameters: g, b, n
QE) n(g+b)
(110101100) ....................... . 2 — Y); > 7 = (2 —pbn)/g .....................

l =1

n-(g+b) bits |

Sum of all bits

Remove bias

How close is it?



Shuffle Bounded Sum

Privacy and utility

© Sum of 7 real [0,1] numbers. Let g > \/n,b = O (g*/(e*n)),p = 1/4
Pip = (R, S, A) is (e, 5)-SDP and z is unbiased with variance O(1/¢?)
o “Amplification” of Binomial mechanism.
- Each user injects binomial noise with variance =~ bp = O(g*/(e*n)) with sensitivity g

* Hence, itis €y = 6\/2 locally private by Binomial mechanism

« Sum of n norm-bounded vectors. There exists parameters g, b, p, modification of P1p

coordinate-wise P1p ——— Pyec 1S (€, 6)-SDP and the output of analyzer is unbiased with variance O(d/¢?)
with additional shift

26
*0 term is omitted for clarity



Vector Sum in LCB
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Performance
SDP via Vector Sum

Theorem

Fix batch size B, privacy budgets € € (0,15] and 6 € (0,1/2). There exist parameter choices of g, b, p, such that

Ve

* (Privacy) Our algorithm is (€, 0)-SDP [ 3
. (Regret) Set B = O(T>), with a high probability, our algorithm achieves

O & Achieve a better regret vs. 0(T3/ 4) under local model without a trusted server

O @ Privacy holds for e > 1

O & Discrete noise and communicating bits

© @ Still has gap compared to central model O(ﬁ )

28



Proof ldeas



A Generic Regret Bound

© Noise assumption. Let n;, V. be total noised added in batch i1 for vector and matrix.

m
« For each m, Z niis a element-wise zero-mean sub-Gaussian with variance 012

1=1
m
« Foreach m, Z N, is a element-wise zero-mean sub-Gaussian with variance 022
1=1
e Leto = maX{Ul, 02}
Lemma

Let above noise assumption holds. Our generic algorithm satisfies a high probability regret bound®

Reg(T) = O <dB +d\/T + \EMM)
/ | e

Cost of batch update Standard regret Cost of privacy

30



A Generic Regret Bound
Applications

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

Reg(T) = O (dB +d/T + \/on3/4>
© SDP via LDP amplification — 6> ~ O(T/(e’B))

» Each user’s noise is Gaussian with variance O(1/(e*B)) and a total of T such noise
© SDP via Vector sum — o> ~ O(T/(e*B))
« Each batch is sub-Gaussian noise with variance O(1/¢?%) and a total of M = T/B such noise

© Recover standard private bounds when B = 1 — Central model: 6° = log 7/e? and Local model: 6° ~ T/e?

o Batched central and local models ... improve non-private batch LinUCB...



Simulations

—— LinUCB 40001 —— LinUCB —— LinUCB
6000 1 —— LinUCB-JDP —— LinUCB-JDP 15001+ —— LinUCB-JDP
—— LinUCB-SDP-Amp 30004 —— LinUCB-SDP-Amp —— LinUCB-SDP-Amp
® 40004 LinUCB-SDP-Vec 13 I L?nUCB-SDP-Vec 13 10004 LinUCB—SDP-Vec /
Y LinUCB-LDP Y | LinUCB-LDP a0 LinUCB-LDP
) o 2000 )
o o o
2000 - 1000 - 500 1
0 1 ' ' ' ' ' 0 - ' ' ' ' ' 0 1 ' ' ' ' ’
0 0000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Round Round Round
(a) e = 0.2 (b)e=1 (c)e =10

Our algorithm with both protocols achieve regret that lies in between central and local model

32



Returning Users

Introduction

O Assumption. Each user can participate once in all M batches

« € Each batch — each phase of medical experiment

» € Send feedback once in each phase allows for tracking the overall effectiveness
O Key differences.

o Shuffle model — advanced composition of privacy loss is required

o Central model — total sensitivity becomes larger

« For central model, we consider users can participate in any M, rounds

33



Returning Users

Guarantees

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

Reg(T) = O (dT/M+dﬁ e \FTdm)

o Shuffle model — scale € by 1/4/M for (e, 5)-SDP
. As a result, total noise changes from 6> ~ O(M/¢e?) to 6% ~ O(M?/€?)

O Central model — scale € by 1/M,, for (¢, 0)-DP in the central model

. As a result, total noise changes from ¢ & O(log T/ €%) to 0% ~ O(Mg log T/ %)

If M =M, = T'3, both models have the same regret O(T%?>) !



Discussion



Concurrent Work

o A more complicated algorithm.
 Two different batch schedules: shuffler — fixed batch size; server — adaptive batch schedule
* This is due to the fact that their analysis of single-batch schedule is not tight

* Instead, our tighter analysis shows that single-batch schedule is sufficient for same regret
© Privacy guarantees hold only for ¢ < 1.

» |nstead, our SDP via vector sum holds for e > 1

o Adaptive batch schedule in fact causes trouble, i.e., a gap in Theorem 10 of their paper.

* The key issue Is that standard determinant trick cannot be directly used

- Itrelies on the fact that V, = V., where 7, < t is the most recent model update time

 However, this does not necessarily hold due to the added privacy noise! (This problem exists for all three DP models)

36



Open Problems

o Can we close the gap?
. What’s the lower bound for local model? i.e., Can O(T>'*) be improved?

. Or, can one further improve O(T>") in the shuffle model?

o Can we achieve pure DP in all three models?

* The key challenge is a non-trivial matrix concentration bound with sub-exponential tails

o Can we do adaptive batch schedule (i.e., rarely-switching) in private case?

* The key challenge is that standard determinant trick fails

37



Thank you!



