Shuffle Private Linear Contextual Bandits

Xingyu Zhou, Sayak Ray Chowdhury*

UCLA Big Data and Machine Learning Seminar

^{*} Equal Contributions, Post-doc at Boston University

Introduction

Linear Contextual Bandits (LCB)

- $^{\circ}$ For each time t = 1, ..., T
 - 1. Observe context c_t
 - 2. Prescribes action a_t
 - 3. Receive reward $y_t = \langle \phi(c_t, a_t), \theta^* \rangle + \epsilon_t$
 - 4. Update model
- The goal is to minimize regret

age, medical history...

$$\operatorname{Reg}(T) = \sum_{t=1}^{T} \left[\max_{a} \langle \theta^*, \phi(c_t, a) \rangle - \langle \theta^*, \phi(c_t, a_t) \rangle \right]$$

Unknown \mathbb{R}^d vector

Privacy Risk

- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with
 - Bob receives new recommendation
 - If Bob knows Alice is the most recent user
 - Bob's belief that Alice has diabetes increases

Differentially Private LCB

Central model

- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret
- O Privacy vs Regret. [Shariff and Sheffet. 2018] shows that

Regret
$$\tilde{O}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP*

Another Privacy Risk

- Both context and reward are sensitive information
- Owner is not trustworthy?
 - Will it follow the right DP mechanism...?
 - Will it use my data for other use cases…?
 - Will it be attacked by an adversary...?
- Hence, users may not be willing to share their raw data
 - Context via $\phi(c_t, a_t)$
 - Reward y_t

Differentially Private LCB

Local model

- Each user injects noise before sending data
 - By post-processing, local DP implies central DP
- \circ In LCB, each user applies local randomizer ${\cal R}$
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret
- O Privacy vs Regret. [Zheng et al. 2020] shows that

Regret
$$\tilde{O}\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under local (ϵ, δ) -DP*

Regret
$$\tilde{o}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP

Regret
$$\tilde{o}\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under local (ϵ, δ) -DP

Can one achieve a better regret even without a trusted server?

Yes!

Contribution

- 1. Propose a generic private LCB algorithm with black-box protocol $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$
- 2. Two instantiation of $\mathcal P$ guarantee shuffle privacy with regret $\tilde O(T^{3/5})$
- 3. For the case of returning users, our regret can **match** the one under central model, i.e, $\tilde{O}(T^{2/3})$

Related Work Shuffle DP protocols & app. in SGD

- Shuffle DP protocols
 - Practical system [Bittau et al. 2017 ...]
 - Shuffle protocols for bounded sum [Cheu et al. 2021*, Cheu et al. 2019, Balle et al. 2020, Ghazi et al. 2020 ...]
 - Sum of n numbers in [0,1], shuffler enables (ϵ,δ) -SDP with error $\tilde{O}(1/\epsilon)$
 - General "privacy amplification" bounds [Feldman et al. 2021⅓, Erlingsson et al. 2019, Balle et al. 2019 ...]
 - Shuffling of n ϵ_0 -DP locally randomized data, yields (ϵ,δ) -SDP with $\epsilon=\tilde{O}(\epsilon_0/\sqrt{n})$ if $\epsilon_0\leq 1^*$
- Applications in private SGD
 - Both ERM and SCO [Girgis et al. 2021, Lowy and Razaviyayn 2021, Cheu et al. 2021 ...]
 - Shuffler enables SDP with the **same** convergence rate as in central DP

Related Work Shuffle DP in bandit learning

- Shuffle DP in MAB [Tenebaum et al. 2021]
 - A batch-variant arm elimination algorithm
 - Guarantee (ϵ, δ) -SDP with **additive** privacy cost $\frac{K \log T \sqrt{\log(1/\delta)}}{\epsilon}$
 - Central $(\epsilon,0)$ -DP additive cost $\frac{K \log T}{\epsilon}$; Local $(\epsilon,0)$ -DP multiplicative factor $1/\epsilon^2$
- Shuffle DP in linear contextual bandits
 - In addition to rewards, contexts also need protection
 - One concurrent and independent work [Garcelon et al. 2021]
 - More complicated algorithm; A gap exists in their regret analysis*
 - The shuffle privacy guarantee only holds for $\epsilon \ll 1$

Background

Shuffle Differential Privacy

Standard SDP

 $^{\circ}$ Neighboring datasets. $D,D'\in \mathcal{D}^n$ are neighboring if they only differ in one user's data D_i

Def. Differential Privacy [Dwork et al. 2006]

For $\epsilon, \delta > 0$, a randomized mechanism \mathcal{M} satisfies (ϵ, δ) -DP is for **all** neighboring datasets D, D' and **all** events \mathcal{E} in the range of \mathcal{M} $\mathbb{P}\left[\mathcal{M}(D) \in \mathcal{E}\right] \leq e^{\epsilon} \cdot \mathbb{P}\left[\mathcal{M}(D') \in \mathcal{E}\right] + \delta$

Standard shuffle DP. The output of the shuffler is private, i.e., $(S \circ \mathcal{R}^n) := S(\mathcal{R}(D_1), \dots, \mathcal{R}(D_n))$

Def. Shuffle Diff. Privacy [Cheu et al. 2019]

Let $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$ be a protocol for n users. Then, \mathcal{P} satisfies (ϵ, δ) -SDP if the mechanism $(\mathcal{S} \circ \mathcal{R}^n)$ satisfies (ϵ, δ) -DP

 $^{\circ}$ Recall that shuffling amplifies privacy by \sqrt{n}

Shuffle Differential Privacy

SDP in Bandits

- $^{\circ}$ Divide users into batch. Run a standard protocol for each batch $m \in [M]$ with size n_m
- \circ Composite mechanism. $\mathcal{M}_{\mathcal{P}} = (\mathcal{S} \circ \mathcal{R}^{n_1}, \dots, \mathcal{S} \circ \mathcal{R}^{n_M})$
 - Each $(S \circ \mathcal{R}^{n_m})$ operates on n_m users' data \mathcal{D}^{n_m}
 - Each data point in LCB is $(\phi(c_i, a_i), y_i)$

Def. SDP in Bandits

An M-batch shuffle protocol \mathcal{P} is (ϵ, δ) -SDP if $\mathcal{M}_{\mathcal{P}}$ satisfies (ϵ, δ) -DP

O If users are *unique*, it suffices to show each $(S \circ \mathbb{R}^{n_m})$ satisfies (ϵ, δ) -DP

This is assumed in all previous private bandit works. We will discuss how to handle returning users later

by simple parallel-composition

Our Algorithm

A Generic Private LinUCB

Illustration

A Generic Private LinUCB

Alg. Shuffle Private LinUCB

Initialize: batch size B, statistics $V_0=\lambda I_d$, $u_0=0$, initial parameter estimate $\hat{\theta}_0=0$

For local user t = 1, ..., T do

// user-app interaction

Observe user context c_t and prescribes action via $a_t \in \operatorname*{argmax} \langle \phi(c_t, a), \hat{\theta}_{m-1} \rangle + \beta_{m-1} \|\phi(c_t, a)\|_{V_{m-1}^{-1}}$ User generates reward y_t

// local randomizer

Send randomized messages $M_{t,1} = R_1(\phi(c_t, a_t)y_t)$ and $M_{t,2} = R_2(\phi(c_t, a_t)\phi(c_t, a_t)^{\mathsf{T}})$ to the shuffler

If t = mB then // shuffler

Set batch end-time $t_m = t$

Randomly permutes per-batch messages and send to central server, $Y_{m,i} = S_i(\{M_{\tau,i}\}_{t_{m-1}+1 \le \tau \le t_m}), i=1,2$

// central server

Compute per-batch statistics $\tilde{u}_m = A_1(Y_{m,1})$ and $\tilde{V}_m = A_2(Y_{m,2})$

Update statistics $u_m = u_{m-1} + \tilde{u}_m$ and $V_m = V_{m-1} + \tilde{V}_m$

Update estimate $\hat{\theta}_m = V_m^{-1} u_m$, send new model $(\hat{\theta}_m, V_m)$ to users and increase m = m + 1

SDP via LDP Amplification

Amplification of Gaussian Mechanism

Performance

SDP via Amplification

Theorem

Fix batch size B and $e \in \left(0, \sqrt{\frac{\log(2/\delta)}{B}}\right)$. Let local Gaussian mechanism choose noise $\sigma_0 = \tilde{O}(1/(\epsilon\sqrt{B}))$. Then we have

- (Privacy) Our algorithm is $O(\epsilon, \delta)$ -SDP
- (Regret) Set $B = O(T^{3/5})$, with a high probability, our algorithm achieves $\tilde{O}\left(\frac{T^{3/5}}{\sqrt{s}}\right)$
- Achieve a better regret vs. $\tilde{O}(T^{3/4})$ under local model without a trusted server
- Minimal modification on existing private algorithms, i.e., batch + shuffler
- \circ \cong Privacy guarantee holds only for small $\epsilon \ll 1$
- Continuous privacy noise, difficulty on finite computers and even privacy leakage [Kairouz et al. 2021, Mironov et al. 2012]
- Communication of real numbers

SDP via Vector Sum

Shuffle Bounded Sum

Introduction

- $^{\circ}$ **Problem.** Given n numbers within [0,1], private sum with error $\tilde{O}(1/\epsilon)$, no trusted server?
- A shuffle protocol. $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$ proposed in [Cheu et al. 2021 \darkown]
 - Randomizer fixed-point encoding + random rounding + Binomial noise
 - e only discrete noise + bit communication
 - Shuffler randomly permute a bunch of bits
 - Analyzer aggregate bits with simple de-bias operation

Shuffle Bounded Sum

Illustration $\mathcal{P}_{1D} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$

 $x_1 = 0.53$

$$x_2 = 0.27 \longrightarrow \cdots$$

$$\mathcal{R} \text{ Parameters: } g, b, n$$

$$\vdots$$

$$x \quad \bar{x} = \lfloor xg \rfloor \quad \hat{x} = \bar{x} + \gamma_1 \quad \hat{x} + \gamma_2 \qquad (g+b) \text{ bits}$$

$$x_n = 0.98 \longrightarrow 0.98 \longrightarrow 9 \longrightarrow 10 = 9 + 1 \longrightarrow 10 + 5 \longrightarrow (111...000...) \longrightarrow$$

Fixed-point encoding with g = 10

Random rounding $\gamma_1 \sim \mathbf{Ber}(xg - \bar{x})$

Binomial noise $\gamma_2 \sim \mathbf{Bin}(b, p)$

 $\hat{x} + \gamma_2$ are 1 else 0

How close is it?

Is this private?

 \mathcal{A} Parameters: g, b, n

Shuffle Bounded Sum

Privacy and utility [Cheu et al. 2021 1/4]

° Sum of n real [0,1] numbers. Let $g \ge \sqrt{n}, b = \tilde{O}\left(g^2/(\epsilon^2 n)\right), p = 1/4$

 $\mathcal{P}_{1D} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$ is (ϵ, δ) -SDP and z is unbiased with variance $\tilde{O}(1/\epsilon^2)$

- o "Amplification" of Binomial mechanism.
 - Each user injects binomial noise with variance $\approx bp = O(g^2/(\epsilon^2 n))$ with sensitivity g
 - Hence, it is $\epsilon_0 = \epsilon \sqrt{n}$ locally private by Binomial mechanism [Ghazi et al. 2019]
- Sum of n norm-bounded vectors. There exists parameters g,b,p, modification of \mathcal{P}_{1D}

coordinate-wise \mathcal{P}_{1D} \longleftarrow \mathcal{P}_{Vec} is (ϵ, δ) -SDP and the output of analyzer is unbiased with variance $\tilde{O}(d/\epsilon^2)$ with additional shift

Vector Sum in LCB

Performance

SDP via Vector Sum

Theorem

Fix batch size B, privacy budgets $\epsilon \in (0,15]$ and $\delta \in (0,1/2)$. There exist parameter choices of g,b,p, such that

- (**Privacy**) Our algorithm is (ϵ, δ) -SDP
- (Regret) Set $B=O(T^{3/5})$, with a high probability, our algorithm achieves $\tilde{O}\left(\frac{T^{3/5}}{\sqrt{\epsilon}}\right)$
- \cong Achieve a better regret vs. $\tilde{O}(T^{3/4})$ under local model without a trusted server
- Privacy holds for $\epsilon > 1$
- Discrete noise and communicating bits
- $^{\rm o}$ $_{\rm \odot}$ Still has gap compared to central model $\tilde{O}(\sqrt{T})$

Proof Ideas

A Generic Regret Bound

- O Noise assumption. Let n_i , N_i be total noised added in batch i for vector and matrix.
 - For each m, $\sum_{i=1}^m n_i$ is a element-wise zero-mean sub-Gaussian with variance σ_1^2
 - For each m, $\sum_{i=1}^{m} N_i$ is a element-wise zero-mean sub-Gaussian with variance σ_2^2
 - Let $\sigma = \max\{\sigma_1, \sigma_2\}$

Lemma

Let above noise assumption holds. Our generic algorithm satisfies a high probability regret bound*

$$\operatorname{Reg}(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

$$\downarrow \qquad \qquad \downarrow$$
Cost of batch update Standard regret Cost of privacy

30

A Generic Regret Bound

Applications

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° SDP via LDP amplification $\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each user's noise is Gaussian with variance $\tilde{O}(1/(\epsilon^2 B))$ and a total of T such noise
- ° SDP via Vector sum $-\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each batch is sub-Gaussian noise with variance $\tilde{O}(1/\epsilon^2)$ and a total of M=T/B such noise
- ° Recover standard private bounds when B=1 Central model: $\sigma^2 \approx \log T/\epsilon^2$ and Local model: $\sigma^2 \approx T/\epsilon^2$
- Batched central and local models ... improve non-private batch LinUCB...

Simulations

Our algorithm with both protocols achieve regret that lies in between central and local model

Returning Users

Introduction

- $^{\circ}$ Assumption. Each user can participate *once* in all M batches
 - Cach batch each phase of medical experiment
 - Send feedback once in each phase allows for tracking the overall effectiveness
- Key differences.
 - Shuffle model advanced composition of privacy loss is required
 - Central model total sensitivity becomes larger
 - For central model, we consider users can participate in any M_{0} rounds

Returning Users

Guarantees

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

$$Reg(T) = \tilde{O}\left(dT/M + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° Shuffle model scale ϵ by $1/\sqrt{M}$ for (ϵ, δ) -SDP
 - As a result, total noise changes from $\sigma^2 \approx O(M/\epsilon^2)$ to $\sigma^2 \approx O(M^2/\epsilon^2)$
- ° Central model scale ϵ by $1/M_0$ for (ϵ, δ) -DP in the central model
 - As a result, total noise changes from $\sigma^2 \approx O(\log T/\epsilon^2)$ to $\sigma^2 \approx O(M_0^2 \log T/\epsilon^2)$

If $M=M_0=T^{1/3}$, both models have the same regret $\tilde{O}(T^{2/3})$!

Discussion

Concurrent Work

[Garcelon. et al 2021]

- A more complicated algorithm.
 - Two different batch schedules: shuffler fixed batch size; server adaptive batch schedule
 - This is due to the fact that their analysis of single-batch schedule is not tight
 - Instead, our tighter analysis shows that single-batch schedule is sufficient for same regret
- $^{\circ}$ Privacy guarantees hold only for $\epsilon \ll 1$.
 - Instead, our SDP via vector sum holds for $\epsilon > 1$
- Adaptive batch schedule in fact causes trouble, i.e., a gap in Theorem 10 of their paper.
 - The key issue is that standard determinant trick cannot be directly used
 - It relies on the fact that $V_t \succeq V_{\tau_t}$, where $\tau_t < t$ is the most recent model update time
 - However, this does not necessarily hold due to the added privacy noise! (This problem exists for all three DP models)

Open Problems

Can we close the gap?

- What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
- Or, can one further improve $O(T^{3/5})$ in the shuffle model?
- Can we achieve pure DP in all three models?
 - The key challenge is a non-trivial matrix concentration bound with sub-exponential tails
- Can we do adaptive batch schedule (i.e., rarely-switching) in private case?
 - The key challenge is that standard determinant trick fails

Thank you!