Stein's Method for Heavy-Traffic Analysis: Load Balancing and Scheduling

> Xingyu Zhou Wayne State University

(YEQT) XIV workshop, 2021

Backgrounds: heavy-traffic analysis of queueing systems

Diffusion approximations: process-level convergence to a (regulated) Brownian motion

- A large amount of works. To name a few: [Kingman'62,Foschini and Salz'78, Reiman'84, Kelly and Laws'93, Bramson'98, Kang and Williams'12]
- \blacktriangleright It can capture the transient behavior of the queueing systems \heartsuit
- However, steady-state distribution convergence needs more care, i.e., interchange-of-limits ^(S)

Can we directly work on steady state?

Backgrounds: heavy-traffic analysis of queueing systems

Drift method: set the mean drift of a test function to zero in steady state

- Introduced in [Eryilmaz and Srikant'12] with many recent follow-ups and extensions, see [Maguluri and Srikant'16, Wang et al'18, Xie and Lu'15, Wang et al'16, Zhou et al'19]
- Combined with state space collapse, establish first moment (and in general nth moment) optimality in steady state
- However, no explicit characterization of the steady-state distribution

Can we directly say something about steady-state distribution?

Backgrounds: heavy-traffic analysis of queueing systems

Transform method: choose exponential function as the test function

- Introduced in [Hurtado-Lange and Maguluri'18]
- Convergence of MGF implies convergence of stationary distribution ⁽¹⁾
- However, it needs more work and no explicit characterization of convergence rate

We are particularly interested in the following questions:

Q1: Can we directly establish convergence of stationary distribution and convergence rate in heavy traffic?

Q2: Can we maintain the same simplicity of drift method in the analysis?

Q3: Can the same analysis be applied to various systems, e.g., load balancing and scheduling?

Main Results

Stein's method allows us to address all the questions:

Q1: Can we directly establish convergence of stationary distribution and convergence rate?

- $d_W(f(\bar{Q}^{(\varepsilon)}), Z) = O(g(\varepsilon))$, convergence in Wasserstein distance

Q2: Can we maintain the same simplicity of drift method in the analysis?

- key established bounds in drift method + routine Stein's method
- i.e., strong results come for free

Q3: Can the same analysis be applied to various systems, e.g., load balancing and scheduling?

- LB: traditional heavy-traffic, many-server heavy-traffic
- Scheduling: Max-Weight

The punchline...

The punchline...

Bounds from drift method

Convergence of stationary distribution with convergence rates

A gentle start: single-server system

- Consider a discrete-time single server system
- a(t) *i.i.d* integer arrival (mean λ) and s(t) *i.i.d* integer potential service (mean μ)

•
$$q(t+1) = q(t) + a(t) - s(t) + u(t)$$

- Let $\varepsilon = \mu \lambda$ and denote ε -parameterized system $\{q^{(\varepsilon)}(t)\}$
- ▶ Let $\bar{q}^{(\varepsilon)}$, $\bar{a}^{(\varepsilon)}$ and \bar{s} be random variables in steady state

$$\begin{array}{c} \bullet \quad \underbrace{\text{Statistics:}}_{\text{Var}[\overline{s}] = \sigma_{s}^{2}} \mathbb{E}\left[\overline{a}^{(\varepsilon)}\right] = \lambda^{(\varepsilon)}, \ \text{Var}[\overline{a}^{(\varepsilon)}] = (\sigma_{a}^{(\varepsilon)})^{2}, \ \mathbb{E}\left[\overline{s}\right] = \mu \text{ and } \end{array}$$

The goal: show that $\varepsilon \bar{q}^{(\varepsilon)}$ converges to an exponential distribution as $\varepsilon \to 0$ with rate $g(\varepsilon)$

<u>Note 1</u>: For continuous-time systems (M/G/1, G/G/1), Stein's method was first adopted in [Gaunt and Walton'20] <u>Note 2</u>: Our analysis is mainly based on the framework of Stein's method developed in [Braverman et al' 17]

A gentle start: single-server system

Theorem

Consider the single-server system as described above with $a(t) \leq A_{max}$, $s(t) \leq S_{max}$ and $Z \sim Exp(\frac{2}{(\sigma_a^{(\varepsilon)})^2 + \sigma_s^2})$. Then, there exists a constant K such that

$$d_W(arepsilonar{q}^{(arepsilon)},Z)\leq Karepsilon_{arepsilon}$$

where

$$d_W(X,Y) = \sup_{h \in Lip(1)} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|,$$

and for a metric space, $Lip(1) = \{h : S \to \mathbb{R}, |h(x) - h(y)| \le d(x, y)\}.$

Note: Convergence under Wasserstein distance implies the convergence in distribution

Step 1: Stein's equation (or Poisson equation). $f'_h(0) = 0$ and

$$\frac{1}{2}\sigma^2 f_h''(x) - \theta f_h'(x) = h(x) - \mathbb{E}\left[h(Z)\right]$$

Intuitions: two views

• characterizing equation for exponential distribution: $Z \sim \text{Exp}(\frac{2\theta}{\sigma^2})$, i.e., with mean of $\frac{\sigma^2}{2\theta}$, then

$$\mathbb{E}\left[\frac{1}{2}\sigma^2 f''(Z) - \theta f'(Z) + \theta f'(0)\right] = 0$$
(1)

holds for all functions $f : \mathbb{R}^+ \to \mathbb{R}$ with Lipschitz derivative

• generator of RBM: $Z \sim \text{Exp}(\frac{2\theta}{\sigma^2})$ is stationary distribution of RBM with drift θ and variance σ^2 with generator being

$$Gf(x) = \frac{1}{2}\sigma^2 f''(x) - \theta f'(x) \text{ for } x \ge 0 \text{ and } f'(0) = 0$$
 (2)

In steady-state, $\mathbb{E}_{x\sim Z}Gf(x) = 0$

Step 2: Generator coupling. replace x in Stein's equation by $\varepsilon \bar{q}^{(\varepsilon)}$

$$\mathbb{E}\left[h(\varepsilon\bar{q})\right] - \mathbb{E}\left[h(Z)\right] = \mathbb{E}\left[\frac{1}{2}\sigma^2 f_h''(\varepsilon\bar{q}) - \theta f_h'(\varepsilon\bar{q})\right]$$

Add the 'generator' (or drift) of the single-server system (which is zero in steady state) to RHS, i.e.,

$$\mathbb{E}\left[h(\varepsilon\bar{q})\right] - \mathbb{E}\left[h(Z)\right] = \mathbb{E}\left[\frac{1}{2}\sigma^{2}f_{h}''(\varepsilon\bar{q}) - \theta f_{h}'(\varepsilon\bar{q}) - (f_{h}(\varepsilon\bar{q}(t+1)) - f_{h}(\varepsilon\bar{q}(t)))\right]$$

Intuitions: reduces to the distance between two generators – one is generator for RBM, the other is our single-server system

Step 3: Taylor expansion. over the generator of single-server system in the hope to recover the structure of generator of RBM.

$$\begin{aligned} &\left(f_{h}(\varepsilon\bar{q}(t+1))-f_{h}(\varepsilon\bar{q}(t))\right)\\ =& \mathbb{E}\left[\varepsilon^{2}\frac{f_{h}^{\prime\prime}(\varepsilon\bar{q})}{2}\left((\sigma_{a}^{(\varepsilon)})^{2}+\sigma_{s}^{2}\right)-\varepsilon^{2}f_{h}^{\prime}(\varepsilon\bar{q})\right]\\ &+\mathbb{E}\left[\varepsilon^{3}\frac{f_{h}^{\prime\prime\prime}(\eta)}{6}\left(\bar{a}-\bar{s}\right)^{3}+\varepsilon\bar{u}f_{h}^{\prime}(\varepsilon\bar{q}(t+1))-\varepsilon^{2}\frac{f_{h}^{\prime\prime}(\xi)}{2}\bar{u}^{2}\right]\\ &+\mathbb{E}\left[\varepsilon^{4}\frac{f_{h}^{\prime\prime}(\varepsilon\bar{q})}{2}\right]\end{aligned}$$

<u>Idea</u>: set $\sigma^2 = \varepsilon^2 \left((\sigma_a^{\varepsilon})^2 + \sigma_s^2 \right)$ and $\theta = \varepsilon^2$ in Stein's equation and hence green term cancels

Step 4: Gradient bounds. Now we have

$$\begin{split} &|\mathbb{E}\left[h(\varepsilon\bar{q})\right] - \mathbb{E}\left[h(Z)\right]| \\ &\leq \underbrace{\mathbb{E}\left[\left|\varepsilon^{4}\frac{f_{h}''(\varepsilon\bar{q})}{2}\right| + \left|\varepsilon^{3}\frac{f_{h}'''(\eta)}{6}\left(\bar{a}-\bar{s}\right)^{3}\right| + \left|\varepsilon^{2}\frac{f_{h}''(\xi)}{2}\bar{u}^{2}\right|\right]}_{\mathcal{T}_{1}} \\ &+ \underbrace{\mathbb{E}\left[\left|\varepsilon\bar{u}f_{h}'(\varepsilon\bar{q}(t+1))\right|\right]}_{\mathcal{T}_{2}} \end{split}$$

Tools: standard gradient bounds for the solution of Stein's equation, i.e., $\|f_h''\| \leq \frac{\|h'\|}{\theta}$ and $\|f_h'''\| \leq \frac{4\|h'\|}{\sigma^2}$ (noting that $\|h'\| \leq 1$)

Results:

*T*₁ ≤ Kε by gradient bounds and boundedness assumption

 *T*₂ ^(a) ≡ E [|εūf'_h(εq̄(t + 1)) - εūf'_h(0)|] = E [|εū(t)f''_h(ζ)εq̄(t + 1)|] = 0, where (a) holds since f'_h(0) = 0

A generalization

Assumption (Light-tail assumption)

The arrival process a(t) and service process s(t) satisfy that

$$\mathbb{E}\left[e^{\theta_1 a(t)}
ight] \leq D_1 \text{ and } \mathbb{E}\left[e^{\theta_2 s(t)}
ight] \leq D_2,$$

for some constants $\theta_1 > 0$, $\theta_2 > 0$, $D_1 < \infty$ and $D_2 < \infty$ that are all independent of ε .

Theorem

Consider a single-server system that satisfies the light-tail assumption. Let $Z \sim Exp(\frac{2}{(\sigma_s^{(c)})^2 + \sigma_s^2})$, then

$$d_W(arepsilonar{q}^{(arepsilon)},Z)=O(arepsilon\lograc{1}{arepsilon}).$$

A particular case: M/M/1

Theorem

Consider an M/M/1 system with $\lambda = \mu - \varepsilon$. Let $Z \sim Exp(\frac{1}{\lambda})$, then

$$d_W(\varepsilon \bar{q}^{(\varepsilon)}, Z) \leq rac{2}{3} \varepsilon.$$

Idea: follow the same routine analysis and use the generator of M/M/1 system instead

Load balancing

A discrete-time LB model with 1 dispatcher and N queues

•
$$A_{\Sigma}(t)$$
 i.i.d total arrival at time t

- ► $S_{\Sigma}(t) := \sum_{n=1} S_n(t)$, each *n i.i.d* potential service for queue *n*
- At each time t, one queue is selected

$$\begin{array}{l} \bullet \quad Q_n(t+1) = Q_n(t) + A_n(t) - S_n(t) + U_n(t) \\ \bullet \quad \underbrace{\text{Statistics:}}_{\mu_{\Sigma}} \lambda_{\Sigma}^{(\varepsilon)} = \mu_{\Sigma} - \varepsilon, \ \lambda_{\Sigma}^{(\varepsilon)} = \mathbb{E}\left[\overline{A}_{\Sigma}\right], \ (\sigma_{\Sigma}^{(\varepsilon)})^2 = \text{Var}(\overline{A}_{\Sigma}), \\ \mu_{\Sigma} = \mathbb{E}\left[\overline{S}_{\Sigma}\right] \text{ and } \nu_{\Sigma}^2 = \text{Var}(\overline{S}_{\Sigma}) \end{array}$$

The goal: show that $\varepsilon \sum_{n=1}^{N} \overline{Q}_{n}^{(\varepsilon)}$ converges to an exponential distribution as $\varepsilon \to 0$ with rate $g(\varepsilon)$ under a class of policies

Load balancing: general results

Theorem

Consider a set of load balancing systems parameterized by ε . Suppose that the load balancing policy is throughput optimal and there exists a function $g(\varepsilon)$ such that

$$\mathbb{E}\left[\|\overline{\mathsf{Q}}^{(\varepsilon)}(t+1)\|_{1}\|\overline{\mathsf{U}}^{(\varepsilon)}\|_{1}\right] = O(g(\varepsilon)).$$
(3)

Then, we have

$$d_W(\varepsilon \sum_{n=1}^N \overline{Q}_n^{(\varepsilon)}, Z) = O(\max(g(\varepsilon), \varepsilon)).$$

where $Z \sim Exp(rac{2}{(\sigma_{\Sigma}^{(\varepsilon)})^2 + \nu_{\Sigma}^2}).$

Implication: the key is to bound the cross term, which is in fact the key term in drift method, i.e., *state-space collapse*

LB in classical heavy-traffic regime

We consider *N* is fixed and $\varepsilon \rightarrow 0$

Theorem

For a class of LB policies (including JSQ, Pod). We have for all $\varepsilon \leq \varepsilon_0$, $\varepsilon_0 \in (0, \mu_{\Sigma})$

$$\mathbb{E}\left[\|\overline{\mathsf{Q}}^{(\varepsilon)}(t+1)\|_{1}\|\overline{\mathsf{U}}^{(\varepsilon)}\|_{1}\right] \leq \kappa \varepsilon \log(1/\varepsilon),\tag{4}$$

and

$$d_W(arepsilon \sum_{n=1}^N \overline{Q}_n^{(arepsilon)}, Z) \leq Karepsilon \log(1/arepsilon).$$

where $Z \sim \textit{Exp}(rac{2}{(\sigma_{\Sigma}^{(arepsilon)})^2 + \nu_{\Sigma}^2})$

Note 1: one can directly utilize the bounds on the cross term for specific policy, e.g., JSQ in [Hurtado-Lange and Maguluri'20] Note 2: we establish the bounds for general policies

LB in many-server heavy-traffic regime

We consider $\varepsilon = N^{1-\alpha}$ with $\alpha > 1$ and $\mu_{\Sigma} = cN$ for some c > 0

• One example: N homogeneous servers with rate 1, then in the regime above, $\rho = 1 - N^{-\alpha}$

We will replace ε by N in our parameterized systems and consider two scalings:

•
$$(\sigma_{\Sigma}^{(N)})^2 = N\sigma_a^2$$
 and $(\nu_{\Sigma}^{(N)})^2 = N\sigma_s^2$: 'independent' sum
• $(\sigma_{\Sigma}^{(N)})^2 = N^2 \tilde{\sigma}_a^2$ and $(\nu_{\Sigma}^{(N)})^2 = N^2 \tilde{\sigma}_s^2$: 'correlated' sum

The goal: show that $N^{f(\alpha)} \sum_{n=1}^{N} \overline{Q}_{n}^{(N)}$ converges to an exponential distribution as $N \to \infty$ with rate g(N) under a class of policies

LB in many-server heavy-traffic regime

Lemma (Independent case)

Consider a set of load balancing systems parameterized by N such that $\varepsilon = N^{1-\alpha}$, $\alpha > 1$ with $\mu_{\Sigma} = \theta(N)$ and $A_{max} = \theta(N)$. Assume that $(\sigma_{\Sigma}^{(N)})^2 = N\sigma_a^2$ and $(\nu_{\Sigma}^{(N)})^2 = N\sigma_s^2$. Suppose that the load balancing policy is throughput optimal and there exists a function g(N) such that

$$\frac{1}{N}\mathbb{E}\left[\|\overline{\mathsf{Q}}^{(N)}(t+1)\|_1\|\overline{\mathsf{U}}^{(N)}\|_1\right] = O(g(N)). \tag{5}$$

Then, we have

$$d_W(N^{-\alpha}\sum_{n=1}^N\overline{Q}_n^{(N)},Z)=O(\max(g(N),N^{2-\alpha})).$$

where $Z \sim Exp(\frac{2}{\sigma_a^2 + \nu_s^2})$.

LB in many-server heavy-traffic regime

Lemma (Correlated case)

Consider a set of load balancing systems parameterized by N such that $\varepsilon = N^{1-\alpha}$, $\alpha > 1$ with $\mu_{\Sigma} = \theta(N)$ and $A_{max} = \theta(N)$. Assume that $(\sigma_{\Sigma}^{(N)})^2 = N^2 \tilde{\sigma}_a^2$ and $(\nu_{\Sigma}^{(N)})^2 = N^2 \tilde{\sigma}_s^2$. Suppose that the load balancing policy is throughput optimal and there exists a function g(N) such that

$$\frac{1}{N^2} \mathbb{E}\left[\|\overline{\mathsf{Q}}^{(N)}(t+1)\|_1 \|\overline{\mathsf{U}}^{(N)}\|_1 \right] = O(g(N)).$$
 (6)

Then, we have

$$d_W(N^{-\alpha-1}\sum_{n=1}^N \overline{Q}_n^{(N)}, Z) = O(\max(g(N), N^{-\alpha})).$$

where $Z \sim Exp(rac{2}{\tilde{\sigma}_a^2 + \tilde{\nu}_s^2})$.

LB in many-server heavy-traffic regime: JSQ and Pod

Theorem (Independent case)

Consider a set of load balancing systems parameterized by N such that $\varepsilon = N^{1-\alpha}$, $\mu_{\Sigma} = \theta(N)$, $A_{max} = \theta(N)$. Assume that $(\sigma_{\Sigma}^{(N)})^2 = N\sigma_a^2$ and $(\nu_{\Sigma}^{(N)})^2 = N\sigma_s^2$. Let $Z \sim Exp(\frac{2}{\sigma_a^2 + \nu_s^2})$. Then, under JSQ, we have

$$d_W(N^{-\alpha}\sum_{n=1}^N \overline{Q}_n^{(N)}, Z) = O(N^{4-\alpha} \log N).$$

Under Power-of-d with homogeneous servers, we have

$$d_W(N^{-\alpha}\sum_{n=1}^N\overline{Q}_n^{(N)},Z)=O(N^{4.5-\alpha}\log N).$$

Note: similar results are also obtained in [Hurtado-Lange and Maguluri'20]

LB in many-server heavy-traffic regime: JSQ and Pod

Theorem (Correlated case)

Consider a set of load balancing systems parameterized by N such that $\varepsilon = N^{1-\alpha}$, $\mu_{\Sigma} = \theta(N)$, $A_{max} = \theta(N)$. Assume that $(\sigma_{\Sigma}^{(N)})^2 = N^2 \tilde{\sigma}_a^2$ and $(\nu_{\Sigma}^{(N)})^2 = N^2 \tilde{\sigma}_s^2$. Let $Z \sim Exp(\frac{2}{\tilde{\sigma}_a^2 + \tilde{\nu}_s^2})$. Then, under JSQ, we have

$$d_W(N^{-\alpha-1}\sum_{n=1}^N \overline{Q}_n^{(N)}, Z) = O(N^{3-\alpha} \log N),$$

Under Power-of-d with homogeneous servers, we have

$$d_W(N^{-\alpha-1}\sum_{n=1}^N \overline{Q}_n^{(N)}, Z) = O(N^{3.5-\alpha} \log N).$$

Comparison of two heavy-traffic regimes

▶ Classical heavy-traffic regime: *N* fixed, $\varepsilon \rightarrow 0$: JSQ and Pod have the same convergence rate, i.e.,

$$d_W(arepsilon \sum_{n=1}^N \overline{Q}_n^{(arepsilon)}, Z) \leq Karepsilon \log(1/arepsilon).$$

Many-server heavy-traffic regime: JSQ and Pod have different convergence rates, i.e.,

$$(JSQ) \quad d_W(N^{-\alpha}\sum_{n=1}^N \overline{Q}_n^{(N)}, Z) = O(N^{4-\alpha}\log N)$$

(Pod)
$$d_W(N^{-\alpha}\sum_{n=1}^N \overline{Q}_n^{(N)}, Z) = O(N^{4.5-\alpha}\log N),$$

Implication: many-server heavy-traffic regime is better at differentiating the *strongness* of state-space collapse

Scheduling: Max-Weight

A discrete-time N-queue model...

- ▶ $\lambda = (\lambda_n)_n$ and $\sigma^2 = (\sigma_n^2)_n$ for arrival and $\mu = (\mu_n)_n$ and $\nu^2 = (\nu_n^2)_n$ for the service
- ► Capacity region: $\mathcal{R} = \{ r \ge 0 : \langle c^{(k)}, r \rangle \le b^{(k)}, k = 1, 2, ..., K \}$
- ► kth face: $\mathcal{F}^{(k)} \triangleq \{ \mathsf{r} \in \mathcal{R} : \langle \mathsf{c}^{(k)}, \mathsf{r} \rangle = b^{(k)} \}$
- ▶ We fix a particular $\mathcal{F}^{(k)}$ and a point $\boldsymbol{\lambda}^{(k)} \in \mathsf{Relint}(\mathcal{F}^{(k)})$
- ► Let $\lambda^{(\varepsilon)} \triangleq \lambda^{(k)} \varepsilon c^{(k)}$

The goal: show that $\varepsilon \langle c^{(k)}, \overline{Q}^{(\varepsilon)} \rangle$ converges to an exponential distribution as $\varepsilon \to 0$ with rate $g(\varepsilon)$ under Max-Weight

Scheduling: Max-Weight

Theorem

Consider a set of scheduling systems described above that are parametrized by ε defined above. Suppose the scheduling policy is MaxWeight and $Z \sim Exp(\frac{2}{\langle (c^{(k)})^2, (\sigma^{(\varepsilon)})^2 \rangle})$, then

$$d_W(arepsilon\langle \mathsf{c}^{(k)},\overline{\mathsf{Q}}^{(arepsilon)}
angle,Z) = O\left(arepsilon\lograc{1}{arepsilon}
ight).$$

Proof idea: 4 steps Stein's method (routine) + key bounds from drift method (e.g., [Eryilmaz and Srikant'12, Hurtado-Lange and Maguluri'20])

Conclusion

- Stein's method provides a powerful way of obtaining stronger results by utilizing results of drift method
- This can be readily applied to LB: classical heavy-traffic regime and many-server heavy-traffic regime
- This can be readily applied to scheduling: Max-Weight
- ▶ Open problem: what if 1 < α ≤ 4 in the many-server heavy-traffic regime?</p>

Convergence of stationary distribution with convergence rates

Thank you! Q & A