Stein's Method for Heavy-Traffic Analysis:
Load Balancing and Scheduling

Xingyu Zhou
Wayne State University

(YEQT) XIV workshop, 2021



Backgrounds: heavy-traffic analysis of queueing systems

Diffusion approximations: process-level convergence to a (regulated)
Brownian motion

> A large amount of works. To name a few: [Kingman’62,Foschini
and Salz’78, Reiman’84, Kelly and Laws’93, Bramson’98,
Kang and Williams’12]

> |t can capture the transient behavior of the queueing systems @

» However, steady-state distribution convergence needs more care, i.e.,
interchange-of-limits @

Can we directly work on steady state? ]




Backgrounds: heavy-traffic analysis of queueing systems

Drift method: set the mean drift of a test function to zero in steady state

» Introduced in [Eryilmaz and Srikant’12] with many recent
follow-ups and extensions, see [Maguluri and Srikant’16, Wang
et al’18, Xie and Lu’15, Wang et al’16, Zhou et al’19]

> Combined with state space collapse, establish first moment (and in
general nth moment) optimality in steady state @

» However, no explicit characterization of the steady-state distribution

©

[ Can we directly say something about steady-state distribution? ]




Backgrounds: heavy-traffic analysis of queueing systems

Transform method: choose exponential function as the test function

» Introduced in [Hurtado-Lange and Maguluri’18]

» Convergence of MGF implies convergence of stationary
distribution ©

» However, it needs more work and no explicit characterization of

convergence rate @



Motivations

We are particularly interested in the following questions:

Q1: Can we directly establish convergence of stationary distribution and
convergence rate in heavy traffic?

Q2: Can we maintain the same simplicity of drift method in the analysis?

Q3: Can the same analysis be applied to various systems, e.g., load
balancing and scheduling?



Main Results

Stein’s method allows us to address all the questions:

Q1: Can we directly establish convergence of stationary distribution and
convergence rate?
- dw(f(Q1), Z) = O(g(<)), convergence in Wasserstein distance

Q2: Can we maintain the same simplicity of drift method in the analysis?
- key established bounds in drift method + routine Stein’'s method
- i.e., strong results come for free

Q3: Can the same analysis be applied to various systems, e.g., load
balancing and scheduling?

- LB: traditional heavy-traffic, many-server heavy-traffic

- Scheduling: Max-Weight



The punchline...



The punchline...

Stein’s method

Bounds from drift method Convergence of stationary distribution
with convergence rates



A gentle start: single-server system

v

Consider a discrete-time single server system

\4

a(t) i.i.d integer arrival (mean \) and s(t) i.i.d integer potential
service (mean )

q(t +1) = q(t) + a(t) — s(t) + u(t)

Let ¢ = 1 — \ and denote e-parameterized system {q(*)(¢)}

Let g, 3%) and 5 be random variables in steady state
Statistics: E [209)] = A(), Var[a®)] = (025))2, E[5] = u and
Var[3] = o2

vVvyVvVvyy

The goal: show that £G() converges to an exponential distribution as
e — 0 with rate g(e)

Note 1: For continuous-time systems (M/G/1, G/G/1), Stein's method
was first adopted in [Gaunt and Walton’20]

Note 2: Our analysis is mainly based on the framework of Stein's method
developed in [Braverman et al’ 17]




A gentle start: single-server system

Theorem
Consider the single-server system as described above with a(t) < Amax,
s(t) < Spmax and Z ~ Exp(#). Then, there exists a constant K

(032402
such that

dw(egq'®, Z) < Ke,
where

dw(X,Y) = W [E [A(X)] = E[h(Y)]];

and for a metric space, Lip(1) = {h: S — R, |h(x) — h(y)| < d(x,y)}.

Note: Convergence under Wasserstein distance implies the convergence
in distribution




A routine analysis: 4 steps
Step 1: Stein’s equation (or Poisson equation). f/(0) = 0 and
1
50714 () = 0 (x) = h(x) — E[h(Z)]

Intuitions: two views
» characterizing equation for exponential distribution: Z ~ Exp(%),

i.e., with mean of g—;, then
E %O’Qf//(Z) —0f'(Z)+0f'(0)| =0 (1)

holds for all functions f : R™ — R with Lipschitz derivative

» generator of RBM: Z ~ Exp(%) is stationary distribution of RBM
with drift & and variance o with generator being

Gf(x) = %02f’/(x) — 0f'(x) for x >0 and f'(0) =0 (2)

In steady-state, Ey.zGf(x) =0



A routine analysis: 4 steps

Step 2: Generator coupling. replace x in Stein's equation by £§(¢)
1
B0 - EINZ)] = B | 30 (:q) - 0 (=9)

Add the ‘generator’ (or drift) of the single-server system (which is zero in
steady state) to RHS, i.e.,

BNea)] - BN = B | 30(ca) - 07(ca) ~ (f(eale + 1) - f(=a()]|

Intuitions: reduces to the distance between two generators — one is
generator for RBM, the other is our single-server system



A routine analysis: 4 steps

Step 3: Taylor expansion. over the generator of single-server system in
the hope to recover the structure of generator of RBM.

Idea: set 02 =2 ((05)? 4 02) and § = 2 in Stein’s equation and hence

green term cancels



A routine analysis: 4 steps
Step 4: Gradient bounds. Now we have
[E[h(eq)] = E[h(2)]]

D) |
2

f///(,r]) _ _
h 5 (afs)3

T

A

g]E{s4

+E[leafy(eq(t + 1))I]
T

Tools: standard gradient bounds for the solution of Stein’s equation, i.e.,

10 < W0 ang ) < A (noting that 4] < 1)

Results:

» 71 < Ke by gradient bounds and boundedness assumption

> 72 QB [|caf(<q(t + 1)) — <0F(0)]] = E[lea(2)f{ (O)=a(t + 1)]] =
0, where (a) holds since f/(0) =0



A generalization

Assumption (Light-tail assumption)

The arrival process a(t) and service process s(t) satisfy that
E [e"la(”} <Dy and E {eezsm] < Dy,

for some constants 61 > 0, 6, > 0, D; < oo and D> < oo that are all
independent of €.

Theorem

Consider a single-server system that satisfies the light-tail assumption.

Let Z ~ EXP(@E))ﬁ)I then

1
dw ("), Z) = O(c log g)-



A particular case: M/M/1

Theorem
Consider an M/M /1 system with A =y —e. Let Z ~ Exp(}), then

2
dw(eg"®, 2) < 3

Idea: follow the same routine analysis and use the generator of M/M/1
system instead



Load balancing

A discrete-time LB model with 1 dispatcher and N queues

» As(t) i.i.d total arrival at time t
Ss(t) :=>",_1 Sn(t), each n i.i.d potential service for queue n
At each time t, one queue is selected
Qn(t +1) = Qu(t) + An(t) — Sp(t) + Un(t)
Statistics: )\gza) =py —¢, /\gze) =E [As], (J(Z‘E))2 = Var(As),
py =E S):] and 1/% = Var(Sy)

vV vYyy

The goal: show that ¢ ZQ’ZI 55,6) converges to an exponential
distribution as € — 0 with rate g(¢) under a class of policies



Load balancing: general results

Theorem

Consider a set of load balancing systems parameterized by €. Suppose
that the load balancing policy is throughput optimal and there exists a
function g() such that

E (IR + DI ] = o(g(e)). (3)

Then, we have
LN
dw(i‘:Z Qn 7Z) = O(max(g(e),g)).
n=1

where Z ~ Exp( ).

(03)2+12

Implication: the key is to bound the cross term, which is in fact the key
term in drift method, i.e., state-space collapse



LB in classical heavy-traffic regime

We consider N is fixed and ¢ — 0

Theorem
For a class of LB policies (including JSQ, Pod). We have for all € < ey,
€0 € (0, pux)

E[IQ°(+ DIIU7)] < Kelog(1/2), (4)

and
N J—
dw(EZ QE,E), Z) < Kelog(1/e).
n=1

Note 1: one can directly utilize the bounds on the cross term for specific
policy, e.g., JSQ in [Hurtado-Lange and Maguluri’20]
Note 2: we establish the bounds for general policies




LB in many-server heavy-traffic regime

We consider ¢ = N1~ with a > 1 and us = cN for some ¢ > 0

» One example: N homogeneous servers with rate 1, then in the
regime above, p=1— N"¢

We will replace € by N in our parameterized systems and consider two
scalings:
> (U(zN))2 = No? and (1/(ZN))2 = No?2: ‘independent’ sum

> (G(EN))z = N?53 and (V(EN))2 = N252: ‘correlated’ sum

The goal: show that Nf(®) Z’n":l@‘n"’) converges to an exponential
distribution as N — oo with rate g(NV) under a class of policies



LB in many-server heavy-traffic regime

Lemma (Independent case)

Consider a set of load balancing systems parameterized by N such that
e= N2 a>1with us = (N) and Apax = O(N). Assume that
(O'(ZN))2 = No2 and (V)(:N))Q = No2. Suppose that the load balancing
policy is throughput optimal and there exists a function g(N) such that

SE[1RM (¢ + 1) 0 1] = o(e(w). (5)

Then, we have
A"
dw(N™*>Q, ", Z) = O(max(g(N), N*~)).
n=1

where Z ~ Exp(ﬁ).



LB in many-server heavy-traffic regime

Lemma (Correlated case)

Consider a set of load balancing systems parameterized by N such that
e= N2 a>1with us = (N) and Apax = O(N). Assume that
(O'(ZN))2 = N?52 and (1/>(:N))2 = N252. Suppose that the load balancing
policy is throughput optimal and there exists a function g(N) such that

S [1RY e+ DT = o(e(w). (6)

Then, we have
w(N=o 12@ O(max(g(N), N=2)).

where Z ~ Exp( 7 +y2)



LB in many-server heavy-traffic regime: JSQ and Pod

Theorem (Independent case)

Consider a set of load balancing systems parametenzed by N such that
€= Nl_o‘, ps = 0(N), Apax = 9(N) Assume that (0\"))2 = No2 and
(1/ )2 No2. Let Z ~ Exp(
Then, under JSQ, we have

02+V2 )

—(N
dw(N= 3@, 2) = O(N*~ log IV).
Under Power-of-d with homogeneous servers, we have

w(N- ZQ(N O(N*5=log N).

Note: similar results are also obtained in [Hurtado-Lange and
Maguluri’20]




LB in many-server heavy-traffic regime: JSQ and Pod

Theorem (Correlated case)
Consider a set of load balancing systems parameterized by N such that

€= lea, py = O(N), Amax = 0(N). Assume that (O'(ZN))Z = N252 and
( )2 N252. Let Z ~ Exp(

U§-2|-l752 )
Then, under JSQ, we have

N
dw (N30, 2) = O(N*“ log N),

n=1

Under Power-of-d with homogeneous servers, we have

w(N= 120 O(N35~“log N).



Comparison of two heavy-traffic regimes

» Classical heavy-traffic regime: N fixed, ¢ — 0: JSQ and Pod have
the same convergence rate, i.e.,

N
dw(e S QY. Z) < Kelog(1/e).
n=1

» Many-server heavy-traffic regime: JSQ and Pod have different
convergence rates, i.e.,

N
(5Q) dw(N 3@\, Z) = O(N*“log N)

n=1

(Pod)  dy (N~ ZQ O(N*5~“log N),

Implication: many-server heavy-traffic regime is better at differentiating
the strongness of state-space collapse



Scheduling: Max-Weight

A discrete-time N-queue model...
> X = (\,), and 02 = (02), for arrival and p = (), and V2 = (v2),
for the service
> Capacity region: R ={r>0:(c®,r) < b k=1,2,... K}
> kth face: FK) & {r e R : (c¥) r) = bW}
> We fix a particular () and a point A(*) € Relint(F ()
b Let A 2 () _ o0

The goal: show that 5<c(k),6(€)> converges to an exponential
distribution as € — 0 with rate g(e) under Max-Weight



Scheduling: Max-Weight

Theorem

Consider a set of scheduling systems described above that are
parametrized by ¢ defined above. Suppose the scheduling policy is
MaxWeight and Z ~ Exp(m), then

dW(8<c(k),6(E)>, Z)=0 (5|og i) .

Proof idea: 4 steps Stein's method (routine) + key bounds from drift
method (e.g., [Eryilmaz and Srikant’12, Hurtado-Lange and
Maguluri’20])



Conclusion

> Stein's method provides a powerful way of obtaining stronger results
by utilizing results of drift method

» This can be readily applied to LB: classical heavy-traffic regime and
many-server heavy-traffic regime

» This can be readily applied to scheduling: Max-Weight

» Open problem: what if 1 < o < 4 in the many-server heavy-traffic
regime?

Stein’s method

- 2
b
P~ &

i’ _

Bounds from drift method Convergence of stationary distribution
with convergence rates



Thank you!
Q&A



