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Backgrounds: heavy-traffic analysis of queueing systems

Diffusion approximations: process-level convergence to a (regulated)
Brownian motion

I A large amount of works. To name a few: [Kingman’62,Foschini

and Salz’78, Reiman’84, Kelly and Laws’93, Bramson’98,

Kang and Williams’12]

I It can capture the transient behavior of the queueing systems

I However, steady-state distribution convergence needs more care, i.e.,

interchange-of-limits

Can we directly work on steady state?
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Backgrounds: heavy-traffic analysis of queueing systems

Drift method: set the mean drift of a test function to zero in steady state

I Introduced in [Eryilmaz and Srikant’12] with many recent
follow-ups and extensions, see [Maguluri and Srikant’16, Wang

et al’18, Xie and Lu’15, Wang et al’16, Zhou et al’19]

I Combined with state space collapse, establish first moment (and in

general nth moment) optimality in steady state

I However, no explicit characterization of the steady-state distribution

Can we directly say something about steady-state distribution?
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Backgrounds: heavy-traffic analysis of queueing systems

Transform method: choose exponential function as the test function

I Introduced in [Hurtado-Lange and Maguluri’18]

I Convergence of MGF implies convergence of stationary

distribution

I However, it needs more work and no explicit characterization of

convergence rate
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Motivations

We are particularly interested in the following questions:

Q1: Can we directly establish convergence of stationary distribution and
convergence rate in heavy traffic?

Q2: Can we maintain the same simplicity of drift method in the analysis?

Q3: Can the same analysis be applied to various systems, e.g., load
balancing and scheduling?
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Main Results

Stein’s method allows us to address all the questions:

Q1: Can we directly establish convergence of stationary distribution and
convergence rate?

- dW (f (Q̄(ε)),Z ) = O(g(ε)), convergence in Wasserstein distance

Q2: Can we maintain the same simplicity of drift method in the analysis?
- key established bounds in drift method + routine Stein’s method
- i.e., strong results come for free

Q3: Can the same analysis be applied to various systems, e.g., load
balancing and scheduling?

- LB: traditional heavy-traffic, many-server heavy-traffic
- Scheduling: Max-Weight
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The punchline...

Stein’s method

Bounds from drift method Convergence of stationary distribution
with convergence rates
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The punchline...

Stein’s method

Bounds from drift method Convergence of stationary distribution
with convergence rates
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A gentle start: single-server system

I Consider a discrete-time single server system

I a(t) i .i .d integer arrival (mean λ) and s(t) i .i .d integer potential
service (mean µ)

I q(t + 1) = q(t) + a(t)− s(t) + u(t)

I Let ε = µ− λ and denote ε-parameterized system {q(ε)(t)}
I Let q̄(ε), ā(ε) and s̄ be random variables in steady state

I Statistics: E
[
ā(ε)
]

= λ(ε), Var[ā(ε)] = (σ
(ε)
a )2, E [s̄] = µ and

Var[s̄] = σ2
s

The goal: show that εq̄(ε) converges to an exponential distribution as
ε→ 0 with rate g(ε)

Note 1: For continuous-time systems (M/G/1, G/G/1), Stein’s method
was first adopted in [Gaunt and Walton’20]

Note 2: Our analysis is mainly based on the framework of Stein’s method
developed in [Braverman et al’ 17]
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A gentle start: single-server system

Theorem
Consider the single-server system as described above with a(t) ≤ Amax ,
s(t) ≤ Smax and Z ∼ Exp( 2

(σ
(ε)
a )2+σ2

s

). Then, there exists a constant K

such that

dW (εq̄(ε),Z ) ≤ Kε,

where

dW (X ,Y ) = sup
h∈Lip(1)

|E [h(X )]− E [h(Y )] |,

and for a metric space, Lip(1) = {h : S → R, |h(x)− h(y)| ≤ d(x , y)}.

Note: Convergence under Wasserstein distance implies the convergence
in distribution
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A routine analysis: 4 steps
Step 1: Stein’s equation (or Poisson equation). f ′h(0) = 0 and

1

2
σ2f ′′h (x)− θf ′h(x) = h(x)− E [h(Z )]

Intuitions: two views

I characterizing equation for exponential distribution: Z ∼ Exp( 2θ
σ2 ),

i.e., with mean of σ2

2θ , then

E
[

1

2
σ2f ′′(Z )− θf ′(Z ) + θf ′(0)

]
= 0 (1)

holds for all functions f : R+ → R with Lipschitz derivative

I generator of RBM: Z ∼ Exp( 2θ
σ2 ) is stationary distribution of RBM

with drift θ and variance σ2 with generator being

Gf (x) =
1

2
σ2f ′′(x)− θf ′(x) for x ≥ 0 and f ′(0) = 0 (2)

In steady-state, Ex∼ZGf (x) = 0
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A routine analysis: 4 steps

Step 2: Generator coupling. replace x in Stein’s equation by εq̄(ε)

E [h(εq̄)]− E [h(Z )] = E
[

1

2
σ2f ′′h (εq̄)− θf ′h(εq̄)

]
Add the ‘generator’ (or drift) of the single-server system (which is zero in
steady state) to RHS, i.e.,

E [h(εq̄)]− E [h(Z )] = E
[

1

2
σ2f ′′h (εq̄)− θf ′h(εq̄)− (fh(εq̄(t + 1))− fh(εq̄(t)))

]

Intuitions: reduces to the distance between two generators – one is
generator for RBM, the other is our single-server system
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A routine analysis: 4 steps

Step 3: Taylor expansion. over the generator of single-server system in
the hope to recover the structure of generator of RBM.

(fh(εq̄(t + 1))− fh(εq̄(t)))

=E
[
ε2 f
′′
h (εq̄)

2

(
(σ(ε)

a )2 + σ2
s

)
− ε2f ′h(εq̄)

]
+ E

[
ε3 f
′′′
h (η)

6
(ā− s̄)3 + εūf ′h(εq̄(t + 1))− ε2 f

′′
h (ξ)

2
ū2

]
+ E

[
ε4 f
′′
h (εq̄)

2

]

Idea: set σ2 = ε2
(
(σεa)2 + σ2

s

)
and θ = ε2 in Stein’s equation and hence

green term cancels
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A routine analysis: 4 steps

Step 4: Gradient bounds. Now we have

|E [h(εq̄)]− E [h(Z )] |

≤ E
[∣∣∣∣ε4 f

′′
h (εq̄)

2

∣∣∣∣+

∣∣∣∣ε3 f
′′′
h (η)

6
(ā− s̄)3

∣∣∣∣+

∣∣∣∣ε2 f
′′
h (ξ)

2
ū2

∣∣∣∣]︸ ︷︷ ︸
T1

+ E [|εūf ′h(εq̄(t + 1))|]︸ ︷︷ ︸
T2

Tools: standard gradient bounds for the solution of Stein’s equation, i.e.,

‖f ′′h ‖ ≤
‖h′‖
θ and ‖f ′′′h ‖ ≤

4‖h′‖
σ2 (noting that ‖h′‖ ≤ 1)

Results:

I T1 ≤ Kε by gradient bounds and boundedness assumption

I T2
(a)
= E [|εūf ′h(εq̄(t + 1))− εūf ′h(0)|] = E [|εū(t)f ′′h (ζ)εq̄(t + 1)|] =

0, where (a) holds since f ′h(0) = 0
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A generalization

Assumption (Light-tail assumption)
The arrival process a(t) and service process s(t) satisfy that

E
[
eθ1a(t)

]
≤ D1 and E

[
eθ2s(t)

]
≤ D2,

for some constants θ1 > 0, θ2 > 0, D1 <∞ and D2 <∞ that are all
independent of ε.

Theorem
Consider a single-server system that satisfies the light-tail assumption.
Let Z ∼ Exp( 2

(σ
(ε)
a )2+σ2

s

), then

dW (εq̄(ε),Z ) = O(ε log
1

ε
).
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A particular case: M/M/1

Theorem
Consider an M/M/1 system with λ = µ− ε. Let Z ∼ Exp( 1

λ ), then

dW (εq̄(ε),Z ) ≤ 2

3
ε.

Idea: follow the same routine analysis and use the generator of M/M/1
system instead
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Load balancing

A discrete-time LB model with 1 dispatcher and N queues

I AΣ(t) i .i .d total arrival at time t

I SΣ(t) :=
∑

n=1 Sn(t), each n i .i .d potential service for queue n

I At each time t, one queue is selected

I Qn(t + 1) = Qn(t) + An(t)− Sn(t) + Un(t)

I Statistics: λ
(ε)
Σ = µΣ − ε, λ

(ε)
Σ = E

[
AΣ

]
, (σ

(ε)
Σ )2 = Var(AΣ),

µΣ = E
[
SΣ

]
and ν2

Σ = Var(SΣ)

The goal: show that ε
∑N

n=1 Q
(ε)

n converges to an exponential
distribution as ε→ 0 with rate g(ε) under a class of policies
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Load balancing: general results

Theorem
Consider a set of load balancing systems parameterized by ε. Suppose
that the load balancing policy is throughput optimal and there exists a
function g(ε) such that

E
[
‖Q(ε)

(t + 1)‖1‖U
(ε)‖1

]
= O(g(ε)). (3)

Then, we have

dW (ε
N∑

n=1

Q
(ε)

n ,Z ) = O(max(g(ε), ε)).

where Z ∼ Exp( 2

(σ
(ε)
Σ )2+ν2

Σ

).

Implication: the key is to bound the cross term, which is in fact the key
term in drift method, i.e., state-space collapse
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LB in classical heavy-traffic regime

We consider N is fixed and ε→ 0

Theorem
For a class of LB policies (including JSQ, Pod). We have for all ε ≤ ε0,
ε0 ∈ (0, µΣ)

E
[
‖Q(ε)

(t + 1)‖1‖U
(ε)‖1

]
≤ Kε log(1/ε), (4)

and

dW (ε
N∑

n=1

Q
(ε)

n ,Z ) ≤ Kε log(1/ε).

where Z ∼ Exp( 2

(σ
(ε)
Σ )2+ν2

Σ

)

Note 1: one can directly utilize the bounds on the cross term for specific
policy, e.g., JSQ in [Hurtado-Lange and Maguluri’20]

Note 2: we establish the bounds for general policies
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LB in many-server heavy-traffic regime

We consider ε = N1−α with α > 1 and µΣ = cN for some c > 0

I One example: N homogeneous servers with rate 1, then in the
regime above, ρ = 1− N−α

We will replace ε by N in our parameterized systems and consider two
scalings:

I (σ
(N)
Σ )2 = Nσ2

a and (ν
(N)
Σ )2 = Nσ2

s : ‘independent’ sum

I (σ
(N)
Σ )2 = N2σ̃2

a and (ν
(N)
Σ )2 = N2σ̃2

s : ‘correlated’ sum

The goal: show that N f (α)
∑N

n=1 Q
(N)

n converges to an exponential
distribution as N →∞ with rate g(N) under a class of policies
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LB in many-server heavy-traffic regime

Lemma (Independent case)
Consider a set of load balancing systems parameterized by N such that
ε = N1−α, α > 1 with µΣ = θ(N) and Amax = θ(N). Assume that

(σ
(N)
Σ )2 = Nσ2

a and (ν
(N)
Σ )2 = Nσ2

s . Suppose that the load balancing
policy is throughput optimal and there exists a function g(N) such that

1

N
E
[
‖Q(N)

(t + 1)‖1‖U
(N)‖1

]
= O(g(N)). (5)

Then, we have

dW (N−α
N∑

n=1

Q
(N)

n ,Z ) = O(max(g(N),N2−α)).

where Z ∼ Exp( 2
σ2
a+ν2

s
).
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LB in many-server heavy-traffic regime

Lemma (Correlated case)
Consider a set of load balancing systems parameterized by N such that
ε = N1−α, α > 1 with µΣ = θ(N) and Amax = θ(N). Assume that

(σ
(N)
Σ )2 = N2σ̃2

a and (ν
(N)
Σ )2 = N2σ̃2

s . Suppose that the load balancing
policy is throughput optimal and there exists a function g(N) such that

1

N2
E
[
‖Q(N)

(t + 1)‖1‖U
(N)‖1

]
= O(g(N)). (6)

Then, we have

dW (N−α−1
N∑

n=1

Q
(N)

n ,Z ) = O(max(g(N),N−α)).

where Z ∼ Exp( 2
σ̃2
a+ν̃2

s
).
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LB in many-server heavy-traffic regime: JSQ and Pod

Theorem (Independent case)
Consider a set of load balancing systems parameterized by N such that

ε = N1−α, µΣ = θ(N), Amax = θ(N). Assume that (σ
(N)
Σ )2 = Nσ2

a and

(ν
(N)
Σ )2 = Nσ2

s . Let Z ∼ Exp( 2
σ2
a+ν2

s
).

Then, under JSQ, we have

dW (N−α
N∑

n=1

Q
(N)

n ,Z ) = O(N4−α logN).

Under Power-of-d with homogeneous servers, we have

dW (N−α
N∑

n=1

Q
(N)

n ,Z ) = O(N4.5−α logN).

Note: similar results are also obtained in [Hurtado-Lange and

Maguluri’20]
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LB in many-server heavy-traffic regime: JSQ and Pod

Theorem (Correlated case)
Consider a set of load balancing systems parameterized by N such that

ε = N1−α, µΣ = θ(N), Amax = θ(N). Assume that (σ
(N)
Σ )2 = N2σ̃2

a and

(ν
(N)
Σ )2 = N2σ̃2

s . Let Z ∼ Exp( 2
σ̃2
a+ν̃2

s
).

Then, under JSQ, we have

dW (N−α−1
N∑

n=1

Q
(N)

n ,Z ) = O(N3−α logN),

Under Power-of-d with homogeneous servers, we have

dW (N−α−1
N∑

n=1

Q
(N)

n ,Z ) = O(N3.5−α logN).
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Comparison of two heavy-traffic regimes

I Classical heavy-traffic regime: N fixed, ε→ 0: JSQ and Pod have
the same convergence rate, i.e.,

dW (ε
N∑

n=1

Q
(ε)

n ,Z ) ≤ Kε log(1/ε).

I Many-server heavy-traffic regime: JSQ and Pod have different
convergence rates, i.e.,

(JSQ) dW (N−α
N∑

n=1

Q
(N)

n ,Z ) = O(N4−α logN)

(Pod) dW (N−α
N∑

n=1

Q
(N)

n ,Z ) = O(N4.5−α logN),

Implication: many-server heavy-traffic regime is better at differentiating
the strongness of state-space collapse
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Scheduling: Max-Weight

A discrete-time N-queue model...

I λλλ = (λn)n and σ2σ2σ2 = (σ2
n)n for arrival and µµµ = (µn)n and ν2ν2ν2 = (ν2

n)n
for the service

I Capacity region: R = {r ≥ 0 : 〈c(k), r〉 ≤ b(k), k = 1, 2, . . . ,K}
I kth face: F (k) , {r ∈ R : 〈c(k), r〉 = b(k)}
I We fix a particular F (k) and a point λλλ(k) ∈ Relint(F (k))

I Let λλλ(ε) , λλλ(k) − εc(k)

The goal: show that ε〈c(k),Q
(ε)〉 converges to an exponential

distribution as ε→ 0 with rate g(ε) under Max-Weight
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Scheduling: Max-Weight

Theorem
Consider a set of scheduling systems described above that are
parametrized by ε defined above. Suppose the scheduling policy is
MaxWeight and Z ∼ Exp( 2

〈(c(k))2,(σσσ(ε))2〉 ), then

dW (ε〈c(k),Q
(ε)〉,Z ) = O

(
ε log

1

ε

)
.

Proof idea: 4 steps Stein’s method (routine) + key bounds from drift
method (e.g., [Eryilmaz and Srikant’12, Hurtado-Lange and

Maguluri’20])
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Conclusion

I Stein’s method provides a powerful way of obtaining stronger results
by utilizing results of drift method

I This can be readily applied to LB: classical heavy-traffic regime and
many-server heavy-traffic regime

I This can be readily applied to scheduling: Max-Weight

I Open problem: what if 1 < α ≤ 4 in the many-server heavy-traffic
regime?

Stein’s method

Bounds from drift method Convergence of stationary distribution
with convergence rates



28

Thank you!
Q & A


