
1

Heavy-traffic Delay Optimality in Pull-based
Load Balancing Systems: Necessary and

Sufficient Conditions

Xingyu Zhou

June 25 2019 @ Sigmetrics/Performance’19

2

Joint work with...

Jian Tan, Alibaba Ness Shroff, OSU

3

The Model...

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.

3

The Model...

��

Dispatcher� Servers�Requests�

Load Balancing
Algorithms� …

�

1�

2�

…
�

N�

�⌃

µ1

µ2

µN

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.

3

The Model...

��

Dispatcher� Servers�Requests�

Load Balancing
Algorithms� …

�

1�

2�
…
�

N�

�⌃

µ1

µ2

µN

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution 1 .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.

1with all moments bounded

3

The Model...

��

Dispatcher� Servers�Requests�

Load Balancing
Algorithms� …

�

1�

2�
…
�

N�

�⌃

µ1

µ2

µN

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution 1 .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.

1with all moments bounded

3

The Model...

��

Dispatcher� Servers�Requests�

Load Balancing
Algorithms� …

�

1�

2�
…
�

N�

�⌃

µ1

µ2

µN

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution 1 .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.

1with all moments bounded

3

The Model...

��

Dispatcher� Servers�Requests�

Load Balancing
Algorithms� …

�

1�

2�
…
�

N�

�⌃

µ1

µ2

µN

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution 1 .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.

1with all moments bounded

4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).
2. response time (joining a server – leaving the server).

I by Little’s law, minimize the mean number of requests in system.

4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).
2. response time (joining a server – leaving the server).

I by Little’s law, minimize the mean number of requests in system.

4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).
2. response time (joining a server – leaving the server).

I by Little’s law, minimize the mean number of requests in system.

4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).
2. response time (joining a server – leaving the server).

I by Little’s law, minimize the mean number of requests in system.

4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).

2. response time (joining a server – leaving the server).
I by Little’s law, minimize the mean number of requests in system.

4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).
2. response time (joining a server – leaving the server).

I by Little’s law, minimize the mean number of requests in system.

5

Which load balancing policy is the best?

Maybe the most intuitive one: Join the Shortest Queue

5

Which load balancing policy is the best?

Maybe the most intuitive one: Join the Shortest Queue

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.

I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.

I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

6

Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.

7

Contributions...

We present necessary and sufficient conditions on the threshold for delay
optimality in heavy traffic in load balancing systems.

I Theoretical contributions:
I Resolves the long-standing open problem mentioned before.

I The results are more general compared to Kelly’s original conjecture.
I Provides new insights into heavy-traffic delay optimality.

I The ‘King’ equation.
I Develops new techniques for the analysis of load balancing policies.

I New type of state-space collapse.

7

Contributions...

We present necessary and sufficient conditions on the threshold for delay
optimality in heavy traffic in load balancing systems.

I Theoretical contributions:

I Resolves the long-standing open problem mentioned before.
I The results are more general compared to Kelly’s original conjecture.

I Provides new insights into heavy-traffic delay optimality.
I The ‘King’ equation.

I Develops new techniques for the analysis of load balancing policies.
I New type of state-space collapse.

7

Contributions...

We present necessary and sufficient conditions on the threshold for delay
optimality in heavy traffic in load balancing systems.

I Theoretical contributions:
I Resolves the long-standing open problem mentioned before.

I The results are more general compared to Kelly’s original conjecture.

I Provides new insights into heavy-traffic delay optimality.
I The ‘King’ equation.

I Develops new techniques for the analysis of load balancing policies.
I New type of state-space collapse.

7

Contributions...

We present necessary and sufficient conditions on the threshold for delay
optimality in heavy traffic in load balancing systems.

I Theoretical contributions:
I Resolves the long-standing open problem mentioned before.

I The results are more general compared to Kelly’s original conjecture.
I Provides new insights into heavy-traffic delay optimality.

I The ‘King’ equation.

I Develops new techniques for the analysis of load balancing policies.
I New type of state-space collapse.

7

Contributions...

We present necessary and sufficient conditions on the threshold for delay
optimality in heavy traffic in load balancing systems.

I Theoretical contributions:
I Resolves the long-standing open problem mentioned before.

I The results are more general compared to Kelly’s original conjecture.
I Provides new insights into heavy-traffic delay optimality.

I The ‘King’ equation.
I Develops new techniques for the analysis of load balancing policies.

I New type of state-space collapse.

8

Contributions...

The necessary and sufficient conditions on the threshold have...

I Practical contributions:
I Provides a simple guideline for practical systems, e.g., Netflix Zuul.
I Sheds light on the design of new pull-based algorithms.

9

Part I: Background

10

Low delay...

I Closed-form formula in classical regime is very difficult.

I Turn to asymptotic regimes for insights.

Load (ρ)

S
er

ve
rs

(N
)

Classical regime
(fix N, fix ρ)

Heavy-traffic regime
(fix N, ρ→ 1)

Large-system regime
(fix ρ, N →∞)

Many server
Heavy-traffic regime

(N →∞, ρ→ 1)

11

Heavy-traffic Delay Optimality

Definition
It can achieve the lower bound on delay when ε→ 0 (ε =

∑
µn − λΣ),

that is, limε↓0 εE [
∑

Qn] = limε↓0 εE [q] (the queue length is on the order
O(1/ε))

Fact: E [
∑

Qn] ≥ E [q], since one service process is stochastically larger.

11

Heavy-traffic Delay Optimality

Definition
It can achieve the lower bound on delay when ε→ 0 (ε =

∑
µn − λΣ),

that is, limε↓0 εE [
∑

Qn] = limε↓0 εE [q] (the queue length is on the order
O(1/ε))

Fact: E [
∑

Qn] ≥ E [q], since one service process is stochastically larger.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay. (by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic. (some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay. (by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic. (some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay. (by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic.

(some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay.

(by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic.

(some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay.

(by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic.

(some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay.

(by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic.

(some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay.

(by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic.

(some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay. (by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic.

(some hope here?)

I zero dispatching delay.

I low message overhead.

12

Big picture...

I Push algorithms, e.g., JSQ and Pod (sample and join the shorter
queues)

I delay optimal in heavy traffic.

I non-zero dispatching delay. (by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ (idle server pulls jobs from dispatcher)

I very poor delay in heavy traffic. (some hope here?)

I zero dispatching delay.

I low message overhead.

13

Can we design a heavy-traffic delay optimal pull-based policy?

Main idea: A dynamic threshold!

The hope is that:

I instead of only storing idle servers.

I the dispatcher stores servers with queue lengths being less than a
dynamic threshold!

13

Can we design a heavy-traffic delay optimal pull-based policy?

Main idea: A dynamic threshold!

The hope is that:

I instead of only storing idle servers.

I the dispatcher stores servers with queue lengths being less than a
dynamic threshold!

13

Can we design a heavy-traffic delay optimal pull-based policy?

Main idea: A dynamic threshold!

The hope is that:

I instead of only storing idle servers.

I the dispatcher stores servers with queue lengths being less than a
dynamic threshold!

14

Part II: Necessary Conditions

15

The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and joins the
server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.

15

The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and joins the
server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.

15

The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and joins the
server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.

15

The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and joins the
server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.

15

The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and joins the
server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.

15

The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and joins the
server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.

16

Geometry of JBT...
The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks an ID and join the
server.

3. otherwise, randomly picks a queue to join.
Q1

Q2

(r, r)

Rl

Ru

Q1

Q2

(r, r)

Rl

Ru

Q ∈ Rl : Random (full memory) Q ∈ Ru : Random (empty memory)

17

Geometry of JBT...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and join the server.

3. otherwise, randomly picks a queue to join.

Q1

Q2

(r, r)

Rl

Ru

Q1

Q2

(r, r)

Rl

Ru

Q /∈ Rl ∪Ru : shorter queues are preferred.

18

Grow, but not too fast...

Theorem (Necessary Conditions)
Consider the JBT(r) policy.

1. For any constant threshold r , we have the following average delay
ordering in heavy traffic:

DJSQ < DJBT (r) < DRand

2. For r = Ω((1/ε)1+α) for any α > 0, we have that in heavy traffic:

DJSQ < DJBT (r) = DRand

19

Before the proof, any intuitions?

20

The ‘King’ equation...

The sufficient and necessary condition for HT-optimality:

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.

I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

20

The ‘King’ equation...

The sufficient and necessary condition for HT-optimality:

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.
I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

20

The ‘King’ equation...

The sufficient and necessary condition for HT-optimality:

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.
I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

20

The ‘King’ equation...

The sufficient and necessary condition for HT-optimality:

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.
I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

“Probability theory is nothing but common sense reduced to calculation.”

— Pierre Laplace

21

⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

(r, r)

(r, r)

(b) r is a constant in [1,1)(a) r = ⌦((1/✏)1+↵),↵ > 0

Completely degenerate to random.

DJSQ < DJBT (r) = DRand

Q ∈ Rl : Random (full memory)

⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

(r, r)

(r, r)

(b) r is a constant in [1,1)(a) r = ⌦((1/✏)1+↵),↵ > 0

Always has ‘nice’ things happen.

DJSQ < DJBT (r) < DRand

Q /∈ Rl ∪Ru : ‘nice’ things.

21

⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

(r, r)

(r, r)

(b) r is a constant in [1,1)(a) r = ⌦((1/✏)1+↵),↵ > 0

Completely degenerate to random.

DJSQ < DJBT (r) = DRand

Q ∈ Rl : Random (full memory)

⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

(r, r)

(r, r)

(b) r is a constant in [1,1)(a) r = ⌦((1/✏)1+↵),↵ > 0

Always has ‘nice’ things happen.

DJSQ < DJBT (r) < DRand

Q /∈ Rl ∪Ru : ‘nice’ things.

22

The Universal Equality...

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= T (ε)

1 + T (ε)
2 − T (ε)

3

where

T (ε)
1 , 2

N∑
i=1

N∑
j>i

E
[(

Q
(ε)

i − Q
(ε)

j

)(
A

(ε)

i − A
(ε)

j − S
(ε)

i + S
(ε)

j

)]

T (ε)
2 ,

N∑
i=1

N∑
j>i

E
[(

A
(ε)

i − A
(ε)

j − S
(ε)

i + S
(ε)

j

)2
]

T (ε)
3 ,

N∑
i=1

N∑
j>i

E
[(

U
(ε)

i − U
(ε)

j

)2
]

Q
+
, Q(t + 1)

The first unified method to show a policy is NOT optimal.

23

Then...how fast should it grow?

24

Part III: Sufficient Conditions

25

Conjecture time....

Consider the JBT(r) policy with load parameter ε =
∑
µn − λΣ.

Question: Which of the following r value guarantees ‘optimality’?

(A).

(B). r = θ (log(1/ε))

(C). r = θ(log2(1/ε))

(D).

Hint: The average number of tasks is on the order of 1/ε.

25

Conjecture time....

Consider the JBT(r) policy with load parameter ε =
∑
µn − λΣ.

Question: Which of the following r value guarantees ‘optimality’?

(A). r = 100

(B). r = θ (log(1/ε))

(C). r = θ(log2(1/ε))

(D). r = θ((1/ε)1.01)

Hint: The average number of tasks is on the order of 1/ε.

25

Conjecture time....

Consider the JBT(r) policy with load parameter ε =
∑
µn − λΣ.

Question: Which of the following r value guarantees ‘optimality’?

(A). r = 100

(B). r = θ (log(1/ε))

(C). r = θ(log2(1/ε))

(D). r = θ((1/ε)1.01)

Hint: The average number of tasks is on the order of 1/ε.

25

Conjecture time....

Consider the JBT(r) policy with load parameter ε =
∑
µn − λΣ.

Question: Which of the following r value guarantees ‘optimality’?

(A). r = 100

(B). r = θ (log(1/ε))

(C). r = θ(log2(1/ε))

(D). r = θ((1/ε)1.01)

Hint: The average number of tasks is on the order of 1/ε.

26

25 years ago...

Conjecture: ‘optimality’ is guaranteed if r ≥ K log(1/ε).

26

25 years ago...

Conjecture: ‘optimality’ is guaranteed if r ≥ K log(1/ε).2

2Two-server case and diffusion approximation optimality

27

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.

27

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.

27

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.

27

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.

27

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

28

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.

29

What is state-space collapse?

Informally, it means steady state ‘concentrates’ around a subspace.

I the distance between the steady state and a subspace has bounded
moment upper bounds.

I the subspace could be a line or a cone in previous works.

Q1 = Q2

Q1

Q2
Q1 = Q2

Q1

Q2

⇥(1/✏) ⇥(1/✏)

⇥(1/✏)

⇥(1/✏)

30

Why is state-space collapse important?
Recall the ‘King’ equation...

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.
I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

Q1 = Q2

Q1

Q2
Q1 = Q2

Q1

Q2

⇥(1/✏) ⇥(1/✏)

⇥(1/✏)

⇥(1/✏)

In heavy traffic (ε→ 0), steady state lies far away from boundary.

31

What would be the state-space collapse in our case?

32

From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

Drift towards the pink region due to preference of shorter queues.

32

From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

Then, ALL the moments of the distance to pink region are bounded!

E
[
eθ
∗dR(r)

(
Q

(ε)
)]
≤ C∗,

where both θ∗ and C∗ are independent of ε.

32

From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

E
[
Q

(ε)

2 (t + 1)U
(ε)

1

]
=E

[
Q2(t + 1)U1I

(
Q2(t + 1) ≤ 2r ,Q1(t + 1) = 0

)]
(1)

+ E
[
Q2(t + 1)U1I

(
Q2(t + 1) > 2r ,Q1(t + 1) = 0

)]
(2)

32

From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

E
[
Q

(ε)

2 (t + 1)U
(ε)

1

]
=E

[
Q2(t + 1)U1I

(
Q2(t + 1) ≤ 2r ,Q1(t + 1) = 0

)]
(1)

+ E
[
Q2(t + 1)U1I

(
Q2(t + 1) > 2r ,Q1(t + 1) = 0

)]
(2)

(1) ≤ 2rε, since E
[
U1

]
≤ ε.

(2) ≤ C
1

ε2
P
(
Q2(t + 1) > 2r ,Q1(t + 1) = 0

)
≤ C

1

ε2

1

eθr

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

33

Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)

34

How to determine the threshold?

I If we can estimate the traffic load, then we can directly apply the
sufficient condition.

I If not, we can use sampling every T time-slots.

I In particular, randomly sample d queues and take the minimum as
threshold.

I We can prove the following result.

Theorem
For any finite T and d ≥ 1, the policy is throughput and delay optimal in
heavy traffic.

34

How to determine the threshold?

I If we can estimate the traffic load, then we can directly apply the
sufficient condition.

I If not, we can use sampling every T time-slots.

I In particular, randomly sample d queues and take the minimum as
threshold.

I We can prove the following result.

Theorem
For any finite T and d ≥ 1, the policy is throughput and delay optimal in
heavy traffic.

34

How to determine the threshold?

I If we can estimate the traffic load, then we can directly apply the
sufficient condition.

I If not, we can use sampling every T time-slots.

I In particular, randomly sample d queues and take the minimum as
threshold.

I We can prove the following result.

Theorem
For any finite T and d ≥ 1, the policy is throughput and delay optimal in
heavy traffic.

34

How to determine the threshold?

I If we can estimate the traffic load, then we can directly apply the
sufficient condition.

I If not, we can use sampling every T time-slots.

I In particular, randomly sample d queues and take the minimum as
threshold.

I We can prove the following result.

Theorem
For any finite T and d ≥ 1, the policy is throughput and delay optimal in
heavy traffic.

35

Then...is the logarithmic growth rate also necessary?

We conjecture so!

35

Then...is the logarithmic growth rate also necessary?

We conjecture so!

36

Conclusion...

Theorem (Necessary Conditions)

I The threshold r should grow with the traffic load.

I But, it can not grow too fast.

I It provides a sharp characterization of JIQ policy.

Theorem (Sufficient Conditions)

I It is sufficient to have a logarithmic growth rate.

I This resolves a long-standing open problem.

I It provides a useful guideline for practical systems.

37

Thank you!
Q & A

