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Define “optimal” algorithm

Definition (Throughput Optimal)
It can stabilize the system for any arrival rate in capacity region, i.e, for
any ε > 0 where ε =

∑
µn − λΣ.



Definition (Heavy-traffic Delay Optimal)
It can achieve the lower bound on delay when ε→ 0, that is,
limε↓0 εE [

∑
Qn] = limε↓0 εE [q]

Fact: E [
∑

Qn] ≥ E [q], since packet remains in the queue until finished.



Push VS. Pull
Push algorithm: Join-shortest-queue (JSQ)

I sample each queue length

I join the shortest one

Pros:

I Delay optimal in a stochastic order sense. [Weber’78]

I Heavy-traffic delay optimal. [Foschini and Salz’78], [Eryilmaz and

Srikant’12]

Cons:

I Message overhead is undesriable (2N per arrival).

I Non-zero dispatching delay.
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Push VS. Pull
Push algorithm: Power-of-d (Pod)

I randomly sample the queue lengths of d servers.

I join the shortest one among them.

Pros:

I Double exponential decay when N is large. [Mitzenmacher’96]

I Heavy-traffic delay optimal for homogeneous servers. [Chen and

Ye’12], [Maguluri, et al’14]

I Improved message overhead (2d per arrival)

Cons:

I Non-zero dispatching delay.



Push VS. Pull
Push algorithm: Power-of-d (Pod)

I randomly sample the queue lengths of d servers.

I join the shortest one among them.

Pros:

I Double exponential decay when N is large. [Mitzenmacher’96]

I Heavy-traffic delay optimal for homogeneous servers. [Chen and

Ye’12], [Maguluri, et al’14]

I Improved message overhead (2d per arrival)

Cons:

I Non-zero dispatching delay.



Push VS. Pull
Push algorithm: Power-of-d (Pod)

I randomly sample the queue lengths of d servers.

I join the shortest one among them.

Pros:

I Double exponential decay when N is large. [Mitzenmacher’96]

I Heavy-traffic delay optimal for homogeneous servers. [Chen and

Ye’12], [Maguluri, et al’14]

I Improved message overhead (2d per arrival)

Cons:

I Non-zero dispatching delay.



Push VS. Pull
Pull algorithm: Join-idle-queue (JIQ)

I if possible, join an idle queue randomly.
I otherwise, join an arbitrary queue randomly.

It is a pull algorithm since it behaves like the idle server pulls tasks from
the dispathcer.

Pros:

I Better delay performance than Pod with a lower message overhead
(at most 1 per arrival), when traffic is not heavy. [Lu, et al’11],

[Stolyar’15]

I Zero dispatching delay

Cons:

I Delay performance downgrades substantially under heavy traffic.
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Motivation

The main problem:

I push algorithms are heavy-traffic delay optimal , but non-zero
dispatching delay and relatively high message overhead.

I pull algorithm (JIQ) has zero dispatching delay and low message
overhead, but very poor delay in heavy traffic.



Is it possible to attain both benefits at the same time?



Part I: Algorithms that attain both benefits
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I “Optimal”: throughput and heavy-traffic delay

I Zero dispatching delay

I Low message overhead

I Good performance over a large range of traffic
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How can a single algorithm achieve all of these?



Show me your result...

The solution is our JBT-d (Join-Below-Threshold) algorithm:

1. every T time-slots, randomly sample d servers and take the
minimum queue length as threshold.

2. each server report its ID when its queue length is below or equal to
the threshold for the first time.

3. if possible, randomly picks a ID in memory and join the server.

4. otherwise, randomly picks a queue to join.

Remark:

I static vs. dynamic: JIQ is just a special case of our JBT-d with
T =∞ and th = 0, thus static.

I if servers are heterogeneous, report µ and pick ID with proportional
probability in step 3 and 4.
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Universal Optimal...

Theorem
For any finite T and d ≥ 1, JBT-d is throughput and heavy-traffic delay
optimal.

In contrast...

Theorem
JIQ is not heavy-traffic delay optimal even for homogeneous servers.
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Quiz time....

In the heavy-traffic limit: is the delay under JIQ be the same as that
under Random?

(A). Yes (B). No

The answer is NO!

We know that Delayrand = 2DelayJSQ for two-server case.

In fact, in the heavy-traffic limit:

heavy-traffic optimal = JSQ < JIQ < Rand
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What we achieve

I “Optimal”: throughput and heavy-traffic delay

I Zero dispatching delay

I Low message overhead

I Good performance over a large range of traffic



Immediately dispatched

In contrast to push algorithms, JSQ and Pod, where each arrival has to
wait for sampling information, JBT-d dispatches arrival immediately:

I memory ID is non-empty: randomly choose one ID in memory to
join.

I memory ID is empty: randomly choose one from all servers to join.
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I Good performance over a large range of traffic



Low message overhead

A crude upper bound on message overhead per arrival approaches one:

I Push-messages: 2d every T time-slots.

I Pull-messages:
I at most 1 for each arrival
I due to threshold update, it will discard at most N pull-messages

every T time-slots.

Thus,

Upper bound on message per arrival is 1 + (2d + N)/T



What we achieve
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Simulations...

We have conducted a comprehensive set of simulations ( 32 figures!)

For now, you can temporarily trust me.



What we achieve

I “Optimal”: throughput and heavy-traffic delay

I Zero dispatching delay

I Low message overhead

I Good performance over a large range of traffic



JBT-d is just an example:

We identify a “bag” of heavy-traffic delay optimal algorithms



Part II: Theory behind the ‘bag’



The “bag” Π

Definition
A load balancing algorithm is in Π if

I the dispatching distribution P(t) is tilted for any t.

I every T time-slots, there exits a slot t ′ such that P(t ′) is δ-tilted.

Theorem
Any load balancing policy in Π is throughput optimal and heavy-traffic
delay optimal.

Key notions: dispatching distribution P(t)

I tilted

I δ-tilted
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Dispatching distribution and preference

The nth component of dispatching distribution P(t) is the probability of
dispatching arrival to the nth shortest queue.

I let σt(·) be the permutation of queues in increasing order.

I Pn(t) is then the probability for dispatching to the server σt(n).

We also define dispatching preference

∆(t) , P(t)− Prand(t)

where Prand(t) is the dispatching distribution under random routing, i.e,

I homogeneous servers: the nth component of Prand(t) is 1/N.

I heterogeneous servers: the nth component of Prand(t) is µσt(n)
/µΣ.
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Example

Let consider a homogeneous case with 4 servers.

I Random: randomly joins one
I Prand(t) = (1/4, 1/4, 1/4, 1/4)
I ∆(t) = (0, 0, 0, 0)

I JSQ: always join the shortest one
I PJSQ(t) = (1, 0, 0, 0)
I ∆JSQ(t) = (3/4,−1/4,−1/4,−1/4)

I Power of 2: randomly picks two and joins the shorter one
I PPo2(t) = (1/2, 1/3, 1/6, 0)
I ∆Po2(t) = (1/4, 1/12,−1/12,−1/4)

Any Observations?

I positive values in ∆ indicates preference.
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Tilted and δ-tilted distribution

∆(t) , P(t)− Prand(t)

Definition
A P(t) is tilted if, for some 2 ≤ k ≤ N

I ∆n(t) ≥ 0 for all n < k .

I ∆n(t) ≤ 0 for all n ≥ k

Tilted P(t) is called ‘okay’

Definition
A P(t) is δ-tilted if

I ∆n(t) is tilted.

I ∆1(t) ≥ δ, ∆N(t) ≤ −δ
δ-tilted P(t) is called ‘Good’
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I ∆n(t) is tilted.

I ∆1(t) ≥ δ, ∆N(t) ≤ −δ
δ-tilted P(t) is called ‘Good’ n

Pn(t)
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Well, nice examples, but then?

Congratulations! You have MASTERED a class of ‘optimal’ policies!
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All the items in “bag” are optimal

Recall that...
A load balancing algorithm is in Π if

I the dispatching distribution P(t) is tilted for any t, i.e.,

I every T time-slots, there exits a slot t ′ such that P(t ′) is δ-tilted,

i.e.,

Theorem
Any load balancing policy in Π is throughput optimal and heavy-traffic
delay optimal.



Previous optimal policies are in Π...

I JSQ is in bag Π
I T = 1
I PJSQ(t) = (1, 0, . . . , 0), which is δ-tilted for all t.

I Power-of-d is in bag Π for homogeneous servers and d ≥ 2
I T = 1
I PPod(t) =

(
N−n
d−1

)/(
N
d

)
, 1 ≤ n ≤ N − d + 1, which is δ-tilted for all t.

n

Pn(t)

1 2 3 4

1/4
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New policy is in Π too...

Recall that our JBT-d is...

1. every T time-slots, randomly sample d servers and take the
minimum queue length as threshold.

2. each server report its ID when its queue length is not larger than the
threshold for the first time.

3. if possible, randomly picks a ID and join the server.

4. otherwise, randomly picks a queue to join.

We can show...

(a) Every t, P(t) is tilted.

(b) Every t = kT + 1, k = 0, 1, . . ., P(t) is δ-tilted.



Umm...please don’t scare me with the proof!

OK, I promise
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Here is the intuition...

Key idea: queues in the memory have higher preference.

(a) Every t, P(t) is tilted.

I in the worst case, random routing is adopted.

I random routing is tilted.

(b) Every t = kT + 1, k = 0, 1, . . ., P(t) is δ-tilted.

I after sampling, the shorter the queue is, the more likely it is in the
memory.

I as a result, the time-slot immediate after sampling, has preference of
shorter queues over longer queues.

I thus, it is δ-tilted.
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Many more policies deserves your discovery....



Could you give me a big picture now?

OK, why not!
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In summary, we go beyond previous ‘optimal’ policies:

1. we identify a class (bag Π) of ‘optimal’ policies.

2. we prove that pull-based JIQ is not ‘optimal’ even for homogeneous
case.

3. we design a new ‘optimal’ pull-based policy, which enjoys all the nice
features of JIQ.

n

Pn(t)

1 2 3 4

1/4

JSQ

n

Pn(t)

1 2 3 4

1/4

Po2

n

Pn(t)

1 2 3 4
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Rand

n

Pn(t)

1 2 3 4

1/4



Thank you!



From drift to optimality...

Q1

Q2 Q1 = Q2

Q
Q⊥

Q‖

I The drift is positive since

E [〈Q,A− S〉 | Q] ≈ −ε ‖Q‖

under tilted P(t).

I The drift is positive since

E [〈Q⊥,A− S〉 | Q] ≈ −δ ‖Q⊥‖

under δ-tilted P(t) when ε ≤ ε0



Backup

I Is the class Π tight?

I Is there any other possible useful policy in Π?

I Can you characterize the growth rate of threshold to guarantee
optimality?



Backup

Lemma (Throughput optimal)
If there exist T1 > 0, K1 ≥ 0, and γ > 0 such that for all t0 = 1, 2, . . .,
all Z ∈ Z and λΣ < µΣ

E

[
t0+T1−1∑

t=t0

〈Q(t),A(t)− S(t)〉 | Z (t0) = Z

]
≤ −γ ‖Q‖+ K1, (1)

then the system is throughput-optimal.

Lemma (Heavy-traffic optimal)
Under the assumptions of the above lemma, if there further exist T2 > 0,
K2 ≥ 0 and η > 0 that are independent of ε, such that for all
t0 = 1, 2, . . . and all Z ∈ Z

E

[
t0+T2−1∑

t=t0

〈Q⊥(t),A(t)− S(t)〉 | Z (t0) = Z

]
≤ −η ‖Q⊥‖+ K2 (2)

holds for all ε ∈ (0, ε0), ε0 > 0, then the system is heavy-traffic delay
optimal.


