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I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, arbitrary distribution .

I Service rate at each server k is µk , arbitrary distribution.

I Arrival and service are independent.
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The goal of load balancing:

choose the right server(s) for each request.

What does right mean?



4

The goal of load balancing:

choose the right server(s) for each request.

What does right mean?



5

Throughput Optimality

Definition
It can stabilize the system for any arrival rate in capacity region, i.e, for
any ε > 0 where ε =

∑
µn − λΣ.
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Heavy-traffic Delay Optimality

Definition
It can achieve the lower bound on delay when ε→ 0, that is,
limε↓0 εE [

∑
Qn] = limε↓0 εE [q] (since the queue length is order O(1/ε))

Fact: E [
∑

Qn] ≥ E [q], since packet remains in the queue until finished.
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Some ‘optimal’ policies...

I Join-Shortest-Queue (JSQ): Sample all the queue lengths, join
the shortest one. [Foschini and Salz’78], [Eryilmaz and Srikant’12]

I Power-of-d choices (Pod): Randomly sample d queues, join the
shortest one. [Chen and Ye’12], [Maguluri, et al’14]

I A general class of optimal policies: Any policy that statistically
prefers shorter queues is heavy-traffic optimal. [Zhou, et al’18]

All of them share one thing in common: state-space collapse to the line.

All the queue lengths are nearly equal in heavy traffic.
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Warm-up...

Is it possible to achieve delay optimality in heavy traffic with the
following state-space collapse?

(A). Yes (B). No

The answer is Yes!



8

Warm-up...

Is it possible to achieve delay optimality in heavy traffic with the
following state-space collapse?

(A). Yes (B). No

The answer is Yes!



9

Part I: From single to multi-dimension state-space collapse.
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Multi-dimensional cone...

I Consider the following finitely generated cone:

Kα =

{
x ∈ RN : x =

∑
n∈N

wnb(n),wn ≥ 0 for all n ∈ N
}
, (1)

where b(n) is an N-dimensional vector with the nth component being
1 and α everywhere, α ∈ [0, 1].
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Multi-dimensional cone...
I Consider the following finitely generated cone:

Kα =

{
x ∈ RN : x =

∑
n∈N
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, (1)
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1 and α everywhere, α ∈ [0, 1].
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Smaller α, bigger cone.
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State-space collapse to the cone...

I We can decompose the queue length vector as follows.

Q = Q‖ + Q⊥,

as shown in

Q1

Q2

Q

K↵

Q?

Qk

Q1

Q2

Q

K↵

Q?

Qk
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State-space collapse to the cone...
Definition
Let Q be the steady-state, we say state-space collapses to Kα if

E
[∥∥∥Q

(ε)

⊥

∥∥∥r] ≤ Mr (2)

for all ε ∈ (0, ε0), ε0 > 0 and for each r = 1, 2, · · · , Mr are constants that
are independent of ε. (recall that ε is the heavy-traffic parameter.)

Q1

Q2

Q

K↵

Q?

Qk

Q1

Q2

Q

K↵

Q?

Qk
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Main Result...

Theorem (Stability + Collapse to cone =⇒ Optimality)

Given a throughput optimal load balancing policy, if there exists an
α ∈ (0, 1] such that the state-space collapses to the cone Kα

,

then this
policy is heavy-traffic delay optimal in steady-state.
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Main Result...

Theorem (Stability + Collapse to cone =⇒ Optimality)

Key implications:

I If α = 1, the cone Kα reduces to previous single dimensional line.

I Delay optimality in heavy traffic does not require queue lengths
being equal.

I The actual state-space collapse region R could even be non-convex.
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Umm...it seems a little counter-intuitive, any intuitions?
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The ‘King’ equation...

The sufficient and necessary condition for HT-optimality:

lim
ε↓0

E
[∥∥Q

(ε)
(t + 1)

∥∥
1

∥∥U
(ε)

(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.

I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.
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“Probability theory is nothing but common sense reduced to calculation.”

— Pierre Laplace
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IMPLICATIONS: No server is idle while others with high loads.

Q1 = Q2

Q1
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Q1 = Q2

Q1

Q2

⇥(1/✏) ⇥(1/✏)

⇥(1/✏)
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The problem with ‘ice-cream’ cone...
Consider the following cone given by

Kθ =

x ∈ RN :
‖x(1)

‖ ‖
‖x‖ ≥ cos(θ)

 ,

where x
(1)
‖ is the projection of x onto the line 1 = (1, 1, . . . , 1).
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Consider the following cone given by

Kθ =

x ∈ RN :
‖x(1)

‖ ‖
‖x‖ ≥ cos(θ)

 ,

where x
(1)
‖ is the projection of x onto the line 1 = (1, 1, . . . , 1).

Requirements: avoid one queue is empty while others are not.

I To exclude points on axes, e.g., (1,0,0), θ < arccos(1/
√

3).

I To exclude points such as (1,1,0), θ < arccos(
√

2/
√

3).

I In general, θ < arccos(
√
N − 1/

√
N), which reduces to

1 = (1, 1, . . . , 1) for large N.
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Umm...wait, how can we achieve this type of collapse?
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Part II: Flexible load balancing
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A general view...

The nth component of dispatching distribution P(t) is the probability
of dispatching arrival to the nth shortest queue.

I let σt(·) be the permutation of queues in increasing order.

I Pn(t) is then the probability for dispatching to the server σt(n).

We also define dispatching preference

∆(t) , P(t)− Prand(t)

where Prand(t) is the dispatching distribution under random routing.

I homogeneous servers: the nth component of Prand(t) is 1/N.

I heterogeneous servers: the nth component of Prand(t) is µσt(n)
/µΣ.
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Examples...

Consider a system with 4 homogeneous servers.

I Random: randomly joins one
I Prand(t) = (1/4, 1/4, 1/4, 1/4)
I ∆rand(t) = (0, 0, 0, 0)

I JSQ: always join the shortest one
I PJSQ(t) = (1, 0, 0, 0)
I ∆JSQ(t) = (3/4,−1/4,−1/4,−1/4)

I Power of 2: randomly picks two and joins the shorter one
I PPo2(t) = (1/2, 1/3, 1/6, 0)
I ∆Po2(t) = (1/4, 1/12,−1/12,−1/4)

n

Pn(t)

1 2 3 4

1/4

JSQ

n

Pn(t)

1 2 3 4

1/4

Po2

n

Pn(t)

1 2 3 4

1/4
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Preference of shorter queues...

∆(t) , P(t)− Prand(t)

Definition
A P(t) is δ-tilted if, for some 2 ≤ k ≤ N
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A P(t) is δ-tilted if, for some 2 ≤ k ≤ N

I ∆n(t) ≥ 0 for all n < k and ∆n(t) ≤ 0 for all n ≥ k

I ∆1(t) ≥ δ, ∆N(t) ≤ −δ
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But, where is the cone?
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Main Result...

Theorem (δ-tilted outside the cone =⇒ Optimality)

Given a load balancing policy, if there exists a cone Kα with α ∈ (0, 1]
such that dispatching distribution is δ-tilted for any Q(t) /∈ Kα, then this
policy is heavy-traffic delay optimal in steady-state.
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Main Result...

Theorem (δ-tilted outside the cone =⇒ Optimality)

Flexibility from two aspects:

1. When Q(t) ∈ Kα, arbitrary dispatching is allowed.

2. Preference of shorter queue is not necessarily decreasing.

Applications:

I Load balancing with constraints of data locality.

I Load balancing with inaccurate queue lengths information.

I Load balancing with cache replacement cost.

I ......
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The challenge to prove it...

Recall that:

Theorem (Stability + Collapse to cone =⇒ Optimality)

(a) Stability with bounded moments.

I standard Foster’s theorem is difficult, positive drift in cone.

I can solve it by combining fluid model with drift analysis.

(b) State-space collapses to the cone Kα.

I standard drift-based technique fails in our case.
I since a closed-form formula of the projection onto a polyhedral cone

is still an open problem.

I instead, we found that a monotone property of the projection is
enough.
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Extensions...

Recall that: two parameters determine the flexibility.

I α determines the cone size, and hence how often prefer shorter
queues. (frequency)

I δ determines how strong shorter queue is preferred. (intensity)

Both of them can scale down to zero with the load to enjoy even greater
flexibility.

Proposition
Consider the same policy as before, i.e., δ-tilted outside a cone Kα.
Suppose that

α(ε)δ(ε) = Ω(εβ)

for some β ∈ [0, 1), then this policy is heavy-traffic delay optimal.
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Geometric intuition...

Proposition
Consider the same policy as before, i.e., δ-tilted outside a cone Kα.
Suppose that

α(ε)δ(ε) = Ω(εβ)

for some β ∈ [0, 1), then this policy is heavy-traffic delay optimal.
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Geometric intuition...
Proposition
Consider the same policy as before, i.e., δ-tilted outside a cone Kα.
Suppose that

α(ε)δ(ε) = Ω(εβ)

for some β ∈ [0, 1), then this policy is heavy-traffic delay optimal.
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What if... the collapse region cannot be covered by a cone?

Q1

Q2

Our new paper addresses it, to appear in Sigmetrics/Performance 2019.

“Heavy-traffic Delay Optimality in Pull-based Load Balancing Systems:
Necessary and Sufficient Conditions”
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Conclusion...

Theorem (Stability + Collapse to cone =⇒ Optimality)

I We show a multi-dimensional state-space can still guarantee delay
optimality.

I The key is no sever is idle while others with high loads.

Theorem (δ-tilted outside the cone =⇒ Optimality)

I Flexibility comes from two aspects: frequency (α) and intensity (δ).

I The methods to prove the result have the potential in general case.
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Thank you!


