The Power of Transfer Learning in Artist Identification

Xingyu Zhou

The Ohio State University

April 30, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Warm Up

Claude Monet

Vincent Van Gogh

(ロ)、(型)、(E)、(E)、 E) の(の)

< □ > < □ > < □ > < □ > < □ > < □ > = □

Claude Monet

Vincent Van Gogh

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Claude Monet

Vincent Van Gogh

Can we solve it with machine learning?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Can we solve it with machine learning?

Let's try it

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Data set

WI KIART ENCYCLOPEDIA

Data set

WI KIART ENCYCLOPEDIA

- ▶ We collect 300 images for *each* artist.
- ▶ We split into 240 for training, 30 for validation and 30 for testing.
- Folder structure:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Platform

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Platform

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- ▶ We use Keras with tensorflow backend to support neural networks.
- We use *Google Colaboratory* as our computing engine.
 - Free Tesla K80 GPU!
 - It is similar to Jupyter notebook:

Baseline CNN

0	model.summary()		
C•			
	Layer (type)	Output Shape	Param #
	conv2d_1 (Conv2D)	(None, 222, 222, 32)	896
	<pre>max_pooling2d_1 (MaxPooling2</pre>	(None, 111, 111, 32)	0
	conv2d_2 (Conv2D)	(None, 109, 109, 64)	18496
	<pre>max_pooling2d_2 (MaxPooling2</pre>	(None, 54, 54, 64)	0
	conv2d_3 (Conv2D)	(None, 52, 52, 128)	73856
	max_pooling2d_3 (MaxPooling2	(None, 26, 26, 128)	0
	conv2d_4 (Conv2D)	(None, 24, 24, 128)	147584
	max_pooling2d_4 (MaxPooling2	(None, 12, 12, 128)	0
	flatten_1 (Flatten)	(None, 18432)	0
	dropout_1 (Dropout)	(None, 18432)	0
	dense_1 (Dense)	(None, 512)	9437696
	dense_2 (Dense)	(None, 1)	513
	Total params: 9,679,041 Trainable params: 9,679,041 Non-trainable params: 0		

Baseline CNN

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Baseline CNN

Test Accuracy: 83.3% 😑

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

□→ Found 60 images belonging to 2 classes. test acc: 0.833333233992258

イロト イロト イヨト イヨト 三日

First layer: it keeps almost all of the information in the initial image.

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

・ロト・西ト・西ト・日・ 日・ シック

Higher layers:

- activations become *abstract*, less information about the visual contents.
- the sparsity of the activations increases.

Well, the result is okay, but definitely not perfect, is it?

Well, the result is okay, but definitely not perfect, is it?

I agree, let's improve it!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transfer Learning

Figure: Transfer learning setup¹

Source:

- ► Task: ImageNet
- Model: VGG16

Target:

- Task: Artist identification
- Model: Softmax classifier

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Transfer learning

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In our case:

- Trained convolutional base: VGG16
- New classifier: Softmax.

Transfer learning with VGG16

Load pre-trained VGG16 model as base.

Extract features

- train_features = np.reshape(train_features, (40, 7 + 7 + 512)) validition_features = np.reshape(traition_features, (60, 7 + 7 + 512)) test_features = np.reshape(test_features, (60, 7 + 7 + 512))
 np.shape(train_features)
- □+ (480, 25088)
- Add densely connected classifier

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Before we start...

Figure: Bottleneck features visualization, created by tsne

(日)、

æ

Now, let's train it...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Now, let's train it...

Test Accuracy: 94.6% 🙂

(日)、

ж

Nice result, but, shall we be satisfied with it?

Nice result, but, shall we be satisfied with it?

No, let's further improve it!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fine tuning

Figure: Frozen certain layers and fine tuning certain blocks only.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Show me the result...

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Show me the result...

The missing one...

Does it really learn?

Some technicals

- Use data processing and augmentation.
- Batch size is 10.
- Training for 80 epochs.
- Optimizer is RMSprop with learning rate $2e^{-5}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Activation is ReLu.
- L2 regularization of $1e^{-5}$.
- Dropout with probability 0.5.

Really nice, but, wait a minute...can you distinguish which column is Monet's works?

Really nice, but, wait a minute...can you distinguish which column is Monet's works?

Claude Monet

Alfred Sisley ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A harder problem...

Claude Monet

Alfred Sisley

A harder problem...

Claude Monet

- Exactly the same period.
- ► Nearly the same style.
- Almost the same scenarios.

Alfred Sisley

Is it possible?

(ロ)、

Show me the result...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Show me the result...

Test Accuracy: 86.6% 😐

Future direction:

- Try model ensemble.
- Try batch normalization.
- Try dynamical rate adjustment.
- Try other pre-trained models (tried ResNet, not successful.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Take-away

- ► Transfer learning is powerful.
- ▶ VGG16 is very easy to train (maybe your first choice).
- Go try the Google colab (too good to be true).
- Keras maybe your first choice, easy and effective.

Learn more about the details and code:

xingyuzhou.org/blog