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a b s t r a c t

Heavy traffic analysis for load balancing policies has relied heavily on the condition of
state-space collapse onto a single-dimensional line in previous works. In this paper, via
Lyapunov-drift analysis, we rigorously prove that even under a multi-dimensional state-
space collapse, steady-state heavy-traffic delay optimality can still be achieved for a general
load balancing system. This result directly implies that achieving steady-state heavy-traffic
delay optimality simply requires that no server is idling while others are busy at heavy
loads, thus complementing and extending the result obtained by diffusion approximations.
Further, we explore the greater flexibility provided by allowing a multi-dimensional state-
space collapse in designing new load balancing policies that are both throughput optimal
and heavy-traffic delay optimal in steady state. This is achieved by overcoming various
technical challenges, and themethods used in this paper could be of independent interest.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider a discrete-time load balancing system which consists of one dispatcher and N servers, each associated with
an infinite buffer queue. The service rate of server n is µn. At each time-slot t , the exogenous tasks arrive with rate λΣ , and
upon arrival each task is immediately dispatched to one of the queues. A load balancing policy is a rule that selects the queue
to which a new arrival in each time-slot should be dispatched. In recent years the development of efficient load balancing
policies has received significant attention because of their applicability in distributed architectures such as Web service [1],
large data storage systems (e.g., HBase [2]), and cloud computing systems [3]. A desirable load balancing policy is often one
that is able to improve the average response time while achieving high utilization of resources. To this end, many works in
the literature have focused on minimizing the average delay in the heavy-traffic regime where the exogenous arrival rate
approaches the boundary of the capacity region, i.e., the heavy-traffic parameter ϵ =

∑
µn − λΣ approaches zero in our

system.
At the heart of most heavy-traffic analysis is the notion of state-space collapse, which roughly means that the original

multi-dimensional system space concentrates around a single dimensional (or generally a lower dimensional) subspace as
the heavy-traffic parameter ϵ goes to zero. For instance, via either diffusion approximations [4] or the recently developed
drift-based framework [5], it has been shown that under the so-called join-shortest-queue (JSQ) policy, the load balancing
system in heavy-traffic would collapse to a one-dimensional line where all the queue lengths are equal. This indicates that
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the system behaves as if there is only a single queue with all the servers pooled together as an aggregated server, which is
often called completeresourcepooling . This result directly implies that JSQ is asymptotically optimal, i.e., heavy-traffic delay
optimal, since the response time in the pooled single-server system is stochastically less than that of a typical load balancing
system. The same one-dimensional state-space collapse is also the key in establishing heavy-traffic delay optimality for the
so-called power-of-d policy [6,7], where the dispatcher routes the new arrival to a server with the shortest queue length
among d ≥ 2 servers selected uniformly at random. Instead of requiring the information of all the queue lengths as in JSQ,
the power-of-d policy is able to achieve asymptotic optimality with partial queue length information, and hence provides
greater flexibility and scalability for large-scale distributed systems.

The authors in [8] argue heuristically that state-space collapse to a line where all the queue lengths are equal may not
be necessary for showing heavy-traffic delay optimality in load balancing systems. In particular, they proposed a symmetric
threshold policy for a load balancing system with two homogeneous servers, and conjectured that as long as the threshold
satisfies a certain property, the total work process under the threshold policy has the same diffusion limit as that under the
optimal JSQ. Nevertheless, the system state in heavy-traffic limit under the threshold policy is now in the two-dimensional
positive orthant rather than a single-dimensional linewhere all the queue lengths are equal. Hence, the authors in [8] argued
that the key feature of a heavy-traffic optimal policy is to keep all the servers busy when there is substantial work rather
than the strong property of maintaining all the queue lengths equal. This argument is validated in a two-server systemwith
an asymmetric threshold policy proposed in [9], under which the total work process is proven to have the same diffusion
limit as that of JSQ while the state space collapses to a linewhere the lengths of two queues are not equal. Note that besides
only considering a two-server system, a further limitation in both [8] and [9] is that the asymptotic optimality holds only for
a finite time interval. This is because the interchange of limits was not established for diffusion approximations in either [8]
or [9]. Therefore, an interesting open problem is whether or not steady-state delay optimality in heavy-traffic holds under
a multi-dimensional state-space collapse for a general load balancing system, and if so, how one can design a load balancing
policy to achieve it.

In this paper, we take a systematic approach to addressing this problem. First, we extend the recently developed drift-
based framework in [5] to rigorously show that even under amulti-dimensional state-space collapse, a load balancing policy
is still able to achieve heavy-traffic delay optimality in steady-state. This result then allows us to explore the flexibility in
designing load balancing policies that are not only throughput optimal but also heavy-traffic delay optimal in steady-state.
The main contributions of this paper can be summarized as follows:

• We rigorously establish heavy-traffic delay optimality in steady-state under a multi-dimensional state-space collapse
for a general load balancing system.More precisely, we consider a symmetric finitely generated coneKα parameterized
by a nonnegative α ∈ [0, 1]. In particular, when α = 1 the cone reduces to the line where all the components are
equal, and when α = 0 the cone is the nonnegative orthant. Our first main result (cf. Theorem 2) states that given
a throughput optimal load balancing policy, if the system state collapses to a cone Kα with any fixed α ∈ (0, 1], this
policy is heavy-traffic delay optimal in steady-state. The importance of this result is two-fold: (i) it rigorously proves a
conjectured insight behind steady-state heavy-traffic delay optimality in load balancing systems. In particular, it shows
that to achieve the heavy-traffic optimality in steady-state for a general system, a load balancing policy should also just
be able to keep all the servers busy when there is substantial work, rather than the strong requirement of maintaining
all the queue lengths equal. This complements and extends the diffusion approximation results in [8,9]. (ii) it enables
us to establish heavy-traffic delay optimality under general state-space collapse regions (including even non-convex
regions). This can be achieved by showing that the actual state-space collapse region can be covered by a coneKα with
some α ∈ (0, 1], which directly implies that the system state also collapses to the cone Kα , and hence heavy-traffic
delay optimality follows from Theorem 2.

• By exploiting the key implications of the first result, we are then able to characterize the degree of flexibility (from
two different dimensions) in designing new load balancing policies that are both throughput-optimal and heavy traffic
delay-optimal in steady-state. (i) The first dimension of flexibility is concerned with the frequency of favoring shorter
queues. We find that instead of favoring shorter queues at each time-slot for every system-state, it is sufficient to
favor shorter queues only when the system-state is outside a cone Kα for any fixed α ∈ (0, 1]. This means that
whenever the system-state is within the cone Kα , the dispatcher is allowed to use an arbitrary Markovian dispatching
distribution, and this flexibility increases as α approaches zero. (ii) The second dimension is related to the intensity
with which shorter queues are favored. We find that instead of only joining the shortest queue as in the JSQ policy
or having monotone decreasing probabilities from joining the shortest queue to the longest queue in the power-of-d
policy, an even weaker intensity of favoring shorter queues is sufficient and this intensity can be characterized by
some parameter δ. The above flexibilities from two different dimensions are stitched together in Theorem 3. We also
consider the case where these two flexibilities scale with the heavy-traffic parameter ϵ, i.e., both α and δ decrease to
zero as ϵ approaches zero.We show that steady-state heavy-traffic delay optimality is preserved as long as αδ = Ω(ϵβ )
for any β ∈ [0, 1) (cf. Proposition 4). This result offers us even more flexibility in designing efficient load balancing
policies.

• The techniques used in this paper are of independent interest. For example, in order to establish throughput optimality
defined in this paper, namely positive recurrence with boundedmoments in steady-state, the standard stochastic drift
analysis of a suitable Lyapunov function is very difficult in our case because the drift within the coneKα can be positive.
To address the problem, we combine fluid approximations with stochastic Lyapunov theory. In particular, we show
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that the Lyapunov function used in the fluid model, i.e., the sum of the queue lengths, is also a suitable Lyapunov
function for the original stochastic system. This connection allows us to carry out the drift analysis in the fluid domain.
Then, we come back to the stochastic system and apply the drift-based analysis of the same Lyapunov function in the
original system by leveraging the result in the fluid domain to show both positive recurrence and bounded moments.
Furthermore, for the result of state-space collapse to a cone, the standard analysis adopted in the single-dimensional
state-space collapse fails as well in this case. This is because in contrast to the projection onto a line, the projection
onto a convex cone is more complex. In fact, a closed-form formula of the projection onto a polyhedral cone is still
an open problem. To circumvent this difficulty, instead of obtaining the exact projection, we find that it is sufficient
to establish a monotone property of the projection to show that the system state collapses to a cone. Moreover, the
bounds on themoments in the state-space collapse result hold even when the system is not in heavy-traffic, and hence
can be independently used as a performance evaluation tool for the pre-limit load balancing systems.

1.1. Related work

The use of state-space collapse to study the delay performance in the heavy-traffic regime was introduced in [4] for two
parallel servers. The authors, via diffusion approximations, showed that the two separate servers under the JSQ policy act as a
pooled resource in the heavy-traffic limit. Since then, themethodology of diffusion limits combinedwith state-space collapse
has been adopted in a number of papers on parallel servers [10,11,6,12,13]. For example, the author in [10] generalized the
results in [4] to the case of renewal arrivals and general service times. In [6], power-of-dwas shown tohave the samediffusion
limit as JSQ in the heavy-traffic limit. The common step in all these works is to show that the diffusion limit in heavy-traffic
converges to a one-dimensional Brownian motion, which implies sample-path optimality in finite time. However, in order
to capture the behavior in steady-state, an interchange of limit argument needs to be proven, which is often difficult and
often not undertaken in the aforementioned works. Some exceptions include works [14,15], in which the authors proved an
interchange of limit argument for generalized Jackson networks of single-server queues, thus establishing that the stationary
distribution of diffusion limit provides a valid approximation for the steady-state of the original network.

Recently, the authors in [5] proposed a drift-based framework, which is able to establish steady-state heavy-traffic
optimality of load balancing policy JSQ and scheduling policyMaxWeight. One of themain features of this framework is that it
is able to avoid the interchange-of-limits issue by directlyworking on the stationary distribution. Due to this nice feature, the
drift-based frameworkhas been recently adopted to showsteady-state heavy-traffic optimality of several policies in different
scenarios. For instance, based on this framework, the authors in [7] established the steady-state heavy-traffic optimality of
power-of-d policy. The authors in [16] identified a class of heavy-traffic delay optimal policies. Moreover, it has been shown
in [17] that a joint JSQ and MaxWeight policy is heavy-traffic delay optimal for MapReduce clusters under a specific traffic
scenario. For all traffic scenarios, a heavy-traffic delay optimal policy called ‘local-task-first’ policy was proposed in [18]
based on this new framework.

However, it is worth noting that the state-space collapse of all the aforementioned heavy-traffic optimal load balancing
policies is only one-dimensional. A two-dimensional state-space collapse was considered in [8], in which the authors argued
heuristically that heavy-traffic delay optimality is preserved in this case, and hence claimed that the key feature of a heavy-
traffic optimal load balancing policy is to keep all the servers busy when there is substantial remaining work, rather than the
strong property of maintaining all the queue lengths equal. The authors in [9] validated this claim for a two-server system
under an asymmetric threshold policy. In particular, they showed that the diffusion limit of the work process is the same as
that under JSQ, while the state-space collapses to a linewhere the queue lengths of two servers are not equal. However, both
the results in [8] and [9] hold only for a finite time since the validity of the interchange of limits argumentwas not established
for the diffusion approximations in either paper. Motivated by this, in this paper, we extend the recently developed drift-
based framework [5] and successfully establish steady-state heavy-traffic optimality under a multi-dimensional state-space
collapse for a general load balancing system, hence complementing and extending the diffusion approximation results in [8]
and [9].

We would also like to remark that besides load balancing (or scheduling) in parallel servers, state-space collapse result
also plays a key role in other heavy-traffic scenarios. For example, given an n × n input queued switch, it was shown that
under the complete resource pooling (CRP) condition (equivalently one-dimensional state-space collapse), the MaxWeight
scheduling algorithm is heavy-traffic delay optimal in the sense of diffusion limit [19]. When the CRP condition is not
met, the state-space would then collapse to a multi-dimensional space instead of a line. In this case, a diffusion limit has
been established in [20]. For the steady-state behavior in this case, via the drift-based framework, it was shown that the
MaxWeight scheduling policy can guarantee optimal delay scaling with respect to n [21,22]. However, in contrast to the
case of the single-dimensional state-space collapse in [19,5], heavy-traffic delay optimality is not established in [21,22].
Recently, multi-dimensional state-space collapse was also used to show delay insensitivity of the proportionally fair policy
in a bandwidth sharing network in heavy-traffic [23].We finally remark that the heavy-traffic regime considered in this paper
and all the aforementioned papers is the conventional heavy-traffic regime, which is different from the Halfin–Whitt heavy-
traffic regime (also known as many-server heavy-traffic regime or quality-and-efficiency-driven regime). In this regime, the
heavy-traffic parameter ϵ approaches zero and the number of servers N goes to infinity at the same time [24–26].
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1.2. Notations

The dot product in RN is denoted by ⟨x, y⟩ ≜
∑N

n=1 xnyn. For any x ∈ RN , the l1 norm is denoted by ∥x∥1 ≜
∑N

n=1 |xn|
and l2 norm is denoted by ∥x∥ ≜

√
⟨x, x⟩. In general, the lr norm is denoted by ∥x∥r ≜ (

∑N
n=1 |xn|r )1/r . Let N denote the set

{1, 2, . . . ,N}.

2. Systemmodel and preliminaries

This section first precisely describes the system model, and then presents several necessary preliminaries.

2.1. System model

We consider a discrete-time load balancing system as follows. There is a central dispatcher and N servers indexed by n,
each of which maintains a FIFO (first-in, first-out) infinite buffer size queue denoted by Qn. In each time-slot, the central
dispatcher routes the new task arrivals to one of the servers as in [5,7,17,18,27,16]. Once a task joins a queue, it will remain
in that queue until its service is completed.

2.1.1. Arrival and service
Let AΣ (t) denote the number of exogenous tasks that arrive at the beginning of time-slot t . We assume that AΣ (t) is an

integer-valued random variable, which is i.i.d. across time-slots. The mean and variance of AΣ (t) are denoted by λΣ and σ 2
Σ ,

respectively. We further assume that there is a positive probability for AΣ (t) to be zero and the arrival process has a finite
support, i.e., AΣ (t) ≤ Amax < ∞ for all t . Let Sn(t) denote the amount of service that server n offers for queue n in time-slot
t . Note that this is not necessarily equal to the number of tasks that leaves the queue because the queue may be empty.
We assume that Sn(t) is an integer-valued random variable, which is i.i.d. across time-slots. We also assume that Sn(t) is
independent across different servers as well as the arrival process. As before, Sn(t) is also assumed to have a finite support,
i.e., Sn(t) ≤ Smax < ∞ for all t and n. Themean and variance of Sn(t) are denoted asµn and ν2

n , respectively. LetµΣ ≜ ΣN
n=1µn

and ν2
Σ ≜ ΣN

n=1ν
2
n denote the mean and variance of the hypothetical total service process SΣ (t) ≜

∑N
n=1 Sn(t).

2.1.2. Queue dynamics
Let Qn(t) be the queue length of server n at the beginning of time slot t . Let An(t) denote the number of tasks routed to

queue n at the beginning of time-slot t according to the dispatching decision. Then the evolution of the length of queue n is
given by

Qn(t + 1) = Qn(t) + An(t) − Sn(t) + Un(t), n = 1, 2, . . . ,N, (1)

where Un(t) = max{Sn(t) − Qn(t) − An(t), 0} is the unused service due to an empty queue.

2.2. Preliminaries

In this paper, we assume that the dispatching decision in each time-slot can at most depend on Q(t). Thus, with the
system model above, the queue length process {Q(t), t ≥ 0} forms a Markov chain. We consider a set of load balancing
systems {Q(ϵ)(t), t ≥ 0} parameterized by ϵ such that the mean arrival rate of the exogenous arrival process {A(ϵ)

Σ (t), t ≥ 0}
is λ

(ϵ)
Σ = µΣ −ϵ. Note that the heavy-traffic parameter ϵ characterizes the distance between the arrival rate and the capacity

region boundary.
We say that a load balancing system is stable if the Markov chain {Q(t), t ≥ 0} is positive recurrent, and then use Q to

denote the random vector whose distribution is the same as the steady-state distribution of {Q(t), t ≥ 0}. Now, we are ready
to present the definitions of throughput optimality and steady-state heavy-traffic delay optimality, respectively.

Definition 1 (Throughput Optimal). A load balancing policy is said to be throughput optimal if for any arrival rate within the
capacity region, i.e., for any ϵ > 0, it can stabilize the system and all the moments of

Q(ϵ) are finite.

Note that this is a stronger definition of throughput optimality than that in [17,18,16], because besides the positive
recurrence, it also requires all the moments to be finite in steady state for any arrival rate within capacity region.

In the heavy-traffic analysis, one is interested in the behavior of the queue lengths as ϵ approaches zero. In order to
present and understand the definition of steady-state heavy-traffic delay optimality, we will first recall the fundamental
lower bound on the expected sum queue lengths under any throughput optimal policy [5].

Lemma 1. Given any throughput optimal policy and assuming that (σ (ϵ)
Σ )2 converges to a constant σ 2

Σ as ϵ decreases to zero,
then

lim inf
ϵ↓0

ϵE

[
N∑

n=1

Q
(ϵ)
n

]
≥

ζ

2
, (2)

where ζ ≜ σ 2
Σ + ν2

Σ .
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The right-hand-side of Eq. (2) is the heavy-traffic limit of a hypothetic single-server systemwith arrival process A(ϵ)
Σ (t) and

service process
∑N

n Sn(t) for all t ≥ 0. This hypothetical single-server queueing system is often called the resource-pooled
system. Since a task cannot be moved from one queue to another in the load balancing system, it is easy to see that the
expected sum queue lengths of the load balancing system is larger than the expected queue length in the resource-pooled
system. However, under a certain load balancing policy, the lower bound in Eq. (2) can actually be attained in the heavy-
traffic limit and hence based on Little’s law this policy achieves the minimum average delay of the system in steady-state.
This directly motivates the following definition of steady-state heavy-traffic delay optimality as in [5,7,17,18,27,16].

Definition 2 (Heavy-traffic Delay Optimality in Steady-state).A load balancing scheme is said to be heavy-traffic delay optimal
in steady-state if the steady-state queue length vector Q

(ϵ)
satisfies

lim sup
ϵ↓0

ϵE

[
N∑

n=1

Q
(ϵ)
n

]
≤

ζ

2
,

where ζ is defined in Lemma 1.

Before we end this section, wewill introduce an N-dimensional cone, which will be very useful in our upcoming analysis.
In particular, the cone Kα is finitely generated by a set of N vectors {b(n), n ∈ N }, i.e.,

Kα =

{
x ∈ RN

: x =

∑
n∈N

wnb(n), wn ≥ 0 for all n ∈ N

}
, (3)

where b(n) is an N-dimensional vector with the nth component being 1 and α everywhere else for some α ∈ [0, 1]. It follows
that, if α = 0, the cone Kα is the non-negative orthant of RN , and if α = 1, the cone Kα reduces to the single-dimensional
line in which all the components are equal. The polar cone K◦

α of the cone Kα is defined as

K◦

α =
{
x ∈ RN

: ⟨x, y⟩ ≤ 0 for all y ∈ Kα

}
,

which will also be quite important in our analysis.

3. Main results

In this section, we present our main results. First, we show that a load balancing policy can be heavy-traffic delay optimal
in steady-state even under a multi-dimensional state-space collapse. Then, by leveraging the key insight behind this result,
we are able to explore the degree of flexibility a load balancing policy can enjoy while guaranteeing both throughput
optimality and heavy-traffic delay optimality. Furthermore, a useful generalization of this result is presented at the end
of this section.

3.1. Multi-dimensional state-space collapse

Wewill first introduce the notion of state-space collapse used in this paper, which intuitively means that in steady-state
the queue length process concentrates around a region of the state-space in heavy-traffic. As stated before, in most of the
previous works on load balancing, the state-space collapse region is a single-dimensional line. In contrast, we are interested
in the situation where the state-space collapse region is the N-dimensional cone Kα defined in Eq. (3), which includes the
single-dimensional line as a special case. For a given cone Kα , we decompose Q

(ϵ)
into two parts as follows

Q
(ϵ)

= Q
(ϵ)
∥

+ Q
(ϵ)
⊥

,

where Q
(ϵ)
∥

is the projection onto the cone Kα , referred to as the parallel component, and Q
(ϵ)
⊥

is the remainder, referred
to as the perpendicular component, which is actually the projection onto the polar cone K◦

α . Note that this decomposition
is well defined and unique since the cones Kα and K◦

α are both closed and convex, which follows from the fact that Kα is
finitely generated. The norm

Q(ϵ)
⊥

 is the distance between Q
(ϵ)

and the cone Kα . We say that the queue length process
concentrates around the cone Kα if the moments of the distance

Q(ϵ)
⊥

 are upper bounded by constants. This motivates the
following definition.

Definition 3 (State-space Collapse toKα). Given an α ∈ (0, 1], we say the state-space of a load balancing system collapses to
the cone Kα if

E
[Q(ϵ)

⊥

r]
≤ Mr (4)

for all ϵ ∈ (0, ϵ0), ϵ0 > 0 and for each r = 1, 2, . . ., in whichMr are constants that are independent of ϵ.
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Fig. 1. A geometric illustration of the key insight of steady-state heavy-traffic optimality in load balancing systems. In the figures above, we use the gray
area to represent the bounded distance between Q and the cone Kα . The dashed line represents the total tasks in the system and hence has order 1/ϵ.
In (a), α = 1 and hence the system state collapses to the one-dimensional line. As a result, the queue lengths of two servers are nearly equal. However,
Theorem 2 tells us that this is not the key feature of heavy-traffic optimality since in (b) the queue lengths difference between two servers, ∥Q(1)

⊥
∥, is of

the same order of ∥Q∥. Rather, the key feature behind heavy-traffic optimality is that it keeps all the servers busy when there is substantial work. This is
achieved by keeping the system state far away from the boundary via state-space collapse, as ϵ approaches zero (see the distance d in both (a) and (b)).

Remark 1. It is worth noting that although the result of state-space collapse is often used as the key step in establishing
heavy-traffic delay optimality, the upper bound itself holds even when the system is not in the heavy-traffic limit, and this
can be of independent interest for analyzing the performance of the system.

Now, we are ready to present our first main result.

Theorem 2. Given a throughput optimal load balancing policy, if there exists an α ∈ (0, 1] such that the state-space collapses to
the cone Kα , then this policy is heavy-traffic delay optimal in steady-state.

Proof. See Section 4.1. □

From this theorem, we can make the following important observations regarding heavy-traffic delay optimality in load
balancing systems. A geometric illustration is presented in Fig. 1 to facilitate the understanding.

(i) If α = 1, then this theorem reduces to previous results on heavy-traffic delay optimality under a single-dimensional
state-space. In this case, the state-space can be regarded as if it evolves in a one-dimensional subspace where all
queues are equal. This is because the queue-length difference between servers is bounded by a constant and hence is
substantially smaller than the queue lengths themselves, which are on the order of 1/ϵ. See Fig. 1(a).

(ii) This theorem tells us that in order to be heavy-traffic delay optimal, a policy does not necessarily have to keep all the
queues equal as in the case ofα = 1. This is because Theorem2 implies that heavy-traffic delay optimality is preserved
even when the difference between the various queues is of the same order as the queue lengths themselves, as shown
in Fig. 1(b). Therefore, this theorem indicates that the key feature of a heavy-traffic delay optimal policy is that it keeps
all the servers busy when there are substantial tasks in the system. This is achieved by keeping system states far away
from the boundary via state-space collapse as ϵ approaches zero, see the distance d in Fig. 1.

(iii) It should also be pointed out that the cone Kα in Theorem 2 is not necessarily the actual region that state-space
collapses to. In fact, this theorem tells us that for heavy-traffic delay optimality, the actual region of state-space
collapse, say R, does not matter as long as it lies within a cone Kα for some α ∈ (0, 1]. This is because in this case the
distance to the coneKα is not larger than that to the regionR. Thus, once it collapses to the regionR, it also collapses to
the coneKα according to Definition 3, and hence achieves heavy-traffic delay optimality. This nice property may be of
independent interest since it enables us to establish heavy-traffic delay optimality even when the multi-dimensional
state-space collapse region is non-regular and non-convex.

Now, we turn to provide the high-level intuition on why Theorem 2 holds. To start with, note that the following equation

Un(t)Qn(t + 1) = 0 (5)

holds for all n and t . This follows directly from the queue dynamics in Eq. (1). Thus, for the single-server resource-pooled
system, when there is positive unused service at time-slot t , the queue must be empty at time-slot t + 1. In contrast, for a
load balancing system, due to the fact that a task cannot be moved from one queue to another queue, there exist situations
when one queue, say i, has positive unused service, i.e., Ui(t) > 0 and hence Qi(t + 1) = 0, while there are remaining tasks
in other queues, i.e., Qj(t + 1) > 0 for some j. As a result, the average queue length of the resource-pooled system is the
lower bound for the load balancing system. Therefore, in order to achieve this lower bound (and hence heavy-traffic delay
optimality by definition), a load balancing policy should guarantee that when one queue has positive unused service, all
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the other queues should be empty in steady-state. In fact, this is actually the insight behind the sufficient and necessary
condition for heavy-traffic delay optimality in Lemma 6, i.e.,

lim
ϵ↓0

E
[Q(ϵ)

(t + 1)

1

U(ϵ)
(t)


1

]
= 0. (6)

Next, let us take a closer look at the condition above. As a result of Eq. (5), the left-hand side of Eq. (6) is always zero
when all the queue lengths are positive. This explains why it is not necessary to keep all the queue lengths equal as in the
case of single-dimensional state-space collapse. Instead, what really matters in the condition is the situation when Ui(t) > 0
(and hence Qi(t + 1) = 0) for some i. In this case, the condition requires all the other queue lengths must be zero as well,
i.e., Qn(t + 1) = 0 for all n. In other words, it requires all the servers be busy when there is substantial work, which is
intuitively satisfied when the queue length process collapses to the coneKα for any α ∈ (0, 1]. This is because the cone is far
away from the states where some queue is empty while another queue is non-empty in heavy traffic. The proof is presented
in Section 4.1.

Remark2. Wewould remark on the choice of the particular formof coneKα , which provides further intuitions on Theorem2.
One reason for the choice is thatKα is finitely generated, andhence it is closed and convex. This guarantees that the projection
onto this cone is well-defined and unique. Anothermore important reason is thatKα can approach the non-negative orthant
while guaranteeing that within the cone there are no ‘bad points’ where some queue is empty and another queue is non-
empty. This directly implies that once the state-space collapses to the coneKα , the condition in Eq. (6) is satisfied. Onemight
think of using an ‘ice-cream’ cone defined below as a substitute of cone Kα ,

Kθ =

{
x ∈ RN

:
∥x(1)

∥
∥

∥x∥
≥ cos(θ )

}
,

where x(1)
∥

is the projection of x onto the line 1 = (1, 1, . . . , 1). The key problemwith such a choice is that in order to exclude
all the ‘bad points’ from Kθ for a large system size N , the cone Kθ has to basically reduce to the line 1, and hence does not
provide us with any further flexibility. To see this, let us start with N = 2. In this case, the choice of Kθ is fine since it is able
to approach the non-negative orthant as θ approaches π/4, while guaranteeing that there are no bad pointswithin the cone.
In fact, it is easy to see that in this case θ plays the same role as α in Kα . Now, consider the case N = 3. One might choose
θ < arccos(1/

√
3) in order to exclude the ‘bad points’ on the axes from the cone Kθ . However, all the points on the line

x = (1, 1, 0) are also ‘bad points’. Thus, in order to exclude all of these points, the choice of θ should be [0, arccos(
√
2/

√
3)).

In general, for the N-dimension case, the choice of θ should be less than arccos(
√
N − 1/

√
N), which approaches zero for

large N . Hence, for a large system size N , the cone Kθ has to approach the single-dimensional line 1 in order to guarantee
heavy-traffic delay optimality, which is not interesting because it does not provide any significant flexibility compared to
the single-dimensional line. The insight of keeping all the servers busy by excluding the ‘bad points’ when there is substantial
work is also useful for scheduling problems. For example, the cone considered in [21] for the scheduling problem in a switch
system contains infinitely many ‘bad points’. It is actually due to this problem that the MaxWeight policy in this case can
only guarantee optimal scaling rather than heavy-traffic delay optimality under the single-dimensional state-space collapse
in [19,5].

In contrast, theKα considered in our paper is able to exclude all the ‘bad points’ for anyα > 0 andhence guarantees heavy-
traffic delay optimality. This fact not only captures the essence of heavy-traffic delay optimality in load balancing systems via
multi-dimensional state-space collapse, but also provides flexibility in analyzing and designing new load balancing policies,
which will be explored in the next section.

3.2. Flexible load balancing

In this section, instead of focusing on yet another policy, we step back and explore the possibility provided by Theorem 2
in analyzing and more importantly designing flexible load balancing policies that are both throughput optimal and heavy-
traffic delay optimal. This is motivated by the fact that existing policies are often too restrictive and might not be easily
adopted to guarantee system performance in scenarios where data locality or inaccurate information of queue lengths exists,
which are common in load balancing systems [28,29].

Beforewe present ourmain result, let us first introduce some necessary concepts. Let Pn(t) be the probability that the new
arrivals are dispatched to the nth shortest queue at time-slot t . By the Markovian assumption, the dispatching distribution
P(t) can at most depend on Q(t). Let

∆(t) = P(t) − Prand(t), (7)

where Prand(t) is the dispatching distribution under uniform random routing (homogeneous case) or proportional random
routing (heterogeneous case), i.e., for homogeneous servers, each component ofPrand(t) is 1/N , and for heterogeneous servers
the nth component of Prand(t) is µσt (n)/µΣ where σt (n) is the index of the nth shortest queue at time-slot t .

To facilitate the understanding of the concepts above, let us look at some examples. Consider a load balancing
system with four homogeneous servers. Under uniform random routing, we have ∆(t) = (0, 0, 0, 0) for each time-
slot t . Under the JSQ policy, the dispatcher always assigns the new arrival to the shortest queue, and thus we have
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∆(t) = (3/4, −1/4, −1/4, −1/4) for each time-slot t . Under the power-of-2 policy, the dispatcher randomly picks
two servers and dispatches the new arrivals to the server with the shorter queue length. It easily follows that ∆(t) =

(1/4, 1/12, −1/12, −1/4) for each time-slot t . Note that, from these examples, we can see that a positive value of ∆n(t)
means that the dispatcher favors the nth shortest queue, while a non-positive value means the dispatcher disfavors the
corresponding queue. This is because ∆(t) equals (0, 0, 0, 0) under uniform random routing, which has no preference over
any queues.

Now, we are prepared to present our second main result, which characterizes the degree of flexibility a load balancing
policy enjoys while guaranteeing throughput and heavy-traffic delay optimality.

Theorem 3. Given a load balancing policy, if there exists a cone Kα with α ∈ (0, 1] such that for all Q(t) /∈ Kα , there is some
k ∈ {2, . . . ,N} such that

∆n(t) ≥ 0, n ≤ k and ∆n(t) ≤ 0, n ≥ k (8)

and

min (|∆1(t)|, |∆N (t)|) ≥ δ (9)

for some positive constant δ that is independent of ϵ, then this policy is both throughput and heavy-traffic delay optimal in steady-
state.

Proof. See Section 4.2. □

Remark 3. It can be easily seen that previous steady-state heavy-traffic delay optimal policies, namely JSQ and power-of-d,
satisfy the conditions in Theorem 3 with α = 1.

Before we turn to the technical aspects, let us first elaborate on the key messages behind this theorem. In sum, this
theorem characterizes the flexibility in achieving throughput and heavy-traffic delay optimality from the following two
dimensions.

(i) The first dimension relates to the frequency of favoring shorter queues. This can be seen from the fact that there are
no requirements on ∆(t) whenever Q(t) falls in the coneKα , and α can be arbitrarily close to zero. This is significantly
different from previous heavy-traffic delay optimal policies, e.g., JSQ and power-of-d. These policies have to favor
shorter queues for every time-slot and every system state. This is often too restrictive and may not be achievable,
especially when considering the data locality problem, since in this case the dispatcher has to place tasks to servers
that store the corresponding input data chunks. In contrast, the above theorem tells us that a load balancing policy
has the flexibility to adopt any dispatching distribution whenever the queue-length state falls in a region that can be
covered by a cone Kα for some α ∈ (0, 1]. For example, for a load balancing system with heterogeneous servers, the
dispatcher can just use uniform random routing when the system state lies within a cone Kα , which provides us a
lot of flexibility (e.g., easy implementation and lower message overhead), compared to JSQ policy, and the flexibility
increases as α decreases. It is also worth noting that although the delay optimality is preserved in heavy-traffic for any
α ∈ (0, 1], the actual delay performance under medium or low loads might get worse as α decreases in some cases.
Thus, the parameter α also captures an important trade-off between flexibility and delay performance under medium
loads, which may be an interesting open problem to explore in the future.

(ii) The second dimension is related to the intensity with which shorter queues are favored. This can be seen from the
conditions on ∆(t) in Eqs. (10) and (11). Specifically, instead of joining only the shortest queue as in the JSQ policy
or having monotone decreasing probabilities from joining the shortest queue to the longest queue in the power-of-d
policy, an even weaker intensity of favoring shorter queues is sufficient, and this intensity can be characterized by the
parameter δ. This kind of flexibility is very useful when the queue length information available at the dispatcher may
be inaccurate due to communication delay or sampling error.

We now highlight the technical contributions behind this theorem. Since this theorem is proved based on Theorem 2, all
we need to show are throughput optimality and state-space collapse to the cone.

For throughput optimality, i.e., positive recurrence and bounded moments in steady-state, the standard drift analysis
of a suitable Lyapunov function is very difficult in our case. This is because the drift within the cone Kα can be positive;
hence, it is challenging from renewal theory to find a sufficiently large T such that the drift within T time slots is negative
outside a finite set. Our approach is to combine fluid approximations with stochastic Lyapunov theory. In particular, we
show that the Lyapunov function used in the fluid model, i.e., the sum of the queue lengths, is also a suitable Lyapunov
function for the original stochastic system. This connection allows us to carry out drift analysis in the fluid domain, which
makes it easier to find the T . Then, we come back to the stochastic system and apply the drift analysis of the same Lyapunov
function in the stochastic system to show both positive recurrence and bounded moments in steady-state. This approach
also provides us with a good intuition on throughput optimality in load balancing systems. Informally speaking, if Q(t) is
in the cone Kα , the drift of the sum queue lengths is of order ϵ towards the origin for any dispatching distribution since
there is no unused service. If Q(t) is outside the cone Kα , it is easy to see that the dispatching distribution in Theorem 3 is
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Fig. 2. A geometric illustration of the result in Proposition 4. As before, we use the gray area to represent the distance between Q and the cone Kα . The
dashed line represents the total tasks in the system and hence has order 1/ϵ. As in Fig. 1, in order to guarantee that all the servers are busy when there is
substantial work in the system, the distance d should be large enough when ϵ goes to zero. To this end, it is sufficient to require that the order of distance
m is smaller than that of the distance d′ . It is easy to see α(ϵ)δ(ϵ) = Ω(ϵβ ) for any β ∈ [0, 1) satisfies this requirement.

strictly better than random routing, and hence enjoys a drift towards the origin. Therefore, the sum queue length will not
go to infinity in steady-state. It is worth noting that for a continuous-time model, the idea of combining fluid models with
Lyapunov drift to show bounded moments was investigated in [30] for a multi-class queueing network with a fixed routing
matrix independent of queue lengths. Because the results are obtained for the fixed routing case, they cannot be directly
applied to our load balancing case in which routing decisions are based on queue lengths.

For the state-space collapse to the cone Kα , the standard analysis adopted in the single-dimensional collapse also fails
in this case. This is because in contrast to the projection onto a line, the projection onto a cone is very difficult. In fact, a
closed-form formula of the projection onto a polyhedral cone is still an open problem. To circumvent this difficulty, instead
of obtaining the exact projection, we are able to find an important monotone property on the projection, which is sufficient
to establish a negative drift independent of ϵ along the direction of Q⊥ when the queue length state is outside the cone
Kα . This in turn indicates that the distance between the system state and the cone Kα cannot go to infinity as ϵ approaches
zero. Therefore, by definition, it establishes the result of state-space collapse to the cone. Combining this with throughput
optimality yields heavy-traffic delay optimality according to Theorem 2.

Remark 4. Wewould like to remark that the techniques used to prove Theorem 3 are of independent interest andmay have
broader applicability. For example, we are currently investigating whether this technique can be used to design a broader
class of heavy-traffic delay optimal scheduling policies.

3.3. Generalization

In the last section, we have shown that when it comes to designing a heavy-traffic delay optimal load balancing policy,
one has the flexibility of choosing the frequency and intensity of favoring shorter queues, which are parameterized by some
fixed positive constants α and δ, respectively. In particular, smaller values of these two constants mean favoring the shorter
queues less frequently and with less intensity. In this section, we will show that these two constants can actually approach
zero at a certain rate with respect to the heavy-traffic parameter ϵ so that the given policy can still guarantee heavy-traffic
delay optimality. As a result, we can exploit this fact to achieve even significant flexibility in designing new policies.

Proposition 4. Given a throughput optimal load balancing policy, if there exists a cone Kα(ϵ) such that for all Q(t) /∈ Kα(ϵ) , there
is some k ∈ {2, . . . ,N} such that

∆n(t) ≥ 0, n ≤ k and ∆n(t) ≤ 0, n ≥ k (10)

and

min (|∆1(t)|, |∆N (t)|) ≥ δ(ϵ) (11)

for some δ(ϵ). Suppose that α(ϵ) and δ(ϵ) satisfy

α(ϵ)δ(ϵ) = Ω(ϵβ )

for some β ∈ [0, 1), then this policy is heavy-traffic delay optimal.

Proof. See Appendix G. □

As before, a geometric view of the result of Proposition 4 is presented in Fig. 2.
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4. Proofs

In this section, we present the proofs of Theorems 2 and 3, respectively.

4.1. Proof of Theorem 2

Before we present the proof, we first introduce the following lemma.

Lemma 5. For any ϵ > 0 and t ≥ 0, we have

Q (ϵ)
n (t + 1)U (ϵ)

n (t) = 0.

Moreover, if the system has a finite first moment, then we have for some constants c1 and cr

E
[U(ϵ)2

1

]
≤ c1ϵ and E

[U(ϵ)r

r

]
≤ crϵ,

where r ∈ (1, ∞).

Proof. According to the queues dynamic in Eq. (1), we can see that when Un(t) is positive, Qn(t + 1) must be zero, which
directly implies the result Q (ϵ)

n (t + 1)U (ϵ)
n (t) = 0 for any ϵ > 0, 1 ≤ n ≤ N and t ≥ 0. To show the second result, let us

consider the Lyapunov function W1(Q(t)) ≜ ∥Q(t)∥1. Since the system has a finite first moment, the mean drift of W1(Q) is
zero in steady state, which gives

E
[U(ϵ)

1

]
= ϵ.

Then, due to the fact that Un(t) ≤ Smax for all 1 ≤ n ≤ N and t ≥ 0, we have
U(ϵ)r

r ≤ (Smax)r−1
U(ϵ)

1, which implies that

cr = (Smax)r−1. Note that
U(ϵ)2

1 ≤ N
U(ϵ)2

2, which gives c1 = NSmax. □

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We prove this theorem by combining the following lemma with the condition of state-space collapse
to the cone Kα . The proof of the lemma is relegated to Appendix A.

Lemma 6. For a throughput optimal policy, it is heavy-traffic delay optimal if and only if

lim
ϵ↓0

E
[Q(ϵ)

(t + 1)

1

U(ϵ)
(t)


1

]
= 0. (12)

Next, we will show that under the condition that the state space collapses to a cone Kα with α ∈ (0, 1], the condition in
Eq. (12) holds. For brevity, we will omit the references t and ϵ, and use Q

+

to denote Q(t + 1) in the following. First, we have

T (ϵ) ≜ E
[Q(ϵ)

(t + 1)

1

U(ϵ)
(t)


1

]
= E

⎡⎣ N∑
i=1

U i

⎛⎝ N∑
j=1

Q
+

j

⎞⎠⎤⎦
= E

⎡⎣ N∑
i=1

U i

⎛⎝ N∑
j=1

(
Q

+

∥j + Q
+

⊥j

)⎞⎠⎤⎦ , (13)

whereQ
+

∥j is the jth component of (Q
+

)∥ and similarly Q
+

⊥j is the jth component of (Q
+

)⊥. For simplicity, we useQ
+

∥
to denote

(Q
+

)∥ andQ
+

⊥
to denote (Q

+

)⊥, respectively. Since the vectorQ
+

∥
is in coneKα by definition, there exist non-negativeweights

w1, . . . , wN such that Q
+

∥
=

∑
wnb(n). Recall that when Un(t) > 0, Qn(t + 1) = 0 by Lemma 5. Thus, when U i(t) > 0, we

have

Q
+

i = 0

Q
+

∥i = −Q
+

⊥i∑
wnb

(n)
i = Q

+

∥i∑
wnb

(n)
j = Q

+

∥j ≤
1
α
Q

+

∥i for all j ̸= i
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The last inequality follows from the definition of vector b(n). Therefore, the term T in Eq. (13) can be upper bounded as
follows.

T (ϵ)
(a)
≤E

⎡⎣∑
i

U i

⎛⎝−N1Q
+

⊥i +
∑

j

Q
+

⊥j

⎞⎠⎤⎦
= E

[
⟨U, −N1Q

+

⊥
⟩

]
+ E

[
⟨U, ⟨1,Q

+

⊥
⟩1⟩

]
(b)
≤ E

[
⟨U, −N1Q

+

⊥
⟩

]
(c)
≤N1

√
E

[U2
]
E

[Q+

⊥

2
]
.

(d)
≤ N1

√
c2ϵM2 (14)

where in (a)N1 = N/α; (b) comes from the non-negativity ofU and the fact that ⟨1,Q
+

⊥
⟩ ≤ 0 since 1 ∈ Kα andQ

+

⊥
∈ K◦

α; (c) is
the result of Cauchy–Schwarz inequality for random vectors; (d) holds because of Lemma 5 and the definition of state-space
collapse in Eq. (4) combined with the fact that Q(t + 1) and Q(t) have the same distribution in steady-state. Since c2,M2 and
N1 are all constants that are independent of ϵ, we have limϵ→0 T (ϵ)

= 0, which establishes the result in Eq. (12), and hence
heavy-traffic delay optimality. □

4.2. Proof of Theorem 3

As already pointed out, the proof of Theorem 3 naturally falls into two parts: throughput optimality and state-space
collapse. Then, it follows directly fromTheorem2 that the result in Theorem3 is true. In both proofs,wewill use the Lyapunov
drift-based approach developed in [5] to derive bounded moments in steady state. The following lemma is a T -step version
of Lemmas 2 and 3 in [21]. This lemma could be proved by simply replacing the one-step transition probability to T -step
transition probability, and hence we omit the proof here.

Lemma 7. For an irreducible aperiodic and positive recurrent Markov chain {X(t), t ≥ 0} over a countable state space X , which
converges in distribution to X, and suppose V : X → R+ is a Lyapunov function. We define the T time-slot drift of V at X as

∆V (X) ≜ [V (X(t0 + T )) − V (X(t0))]I(X(t0) = X),

where I(.) is the indicator function. Suppose for some positive finite integer T , the T time-slot drift of V satisfies the following
conditions:

• (C1) There exists an η > 0 and a κ < ∞ such that for any t0 = 1, 2, . . . and for all X ∈ X with V (X) ≥ κ ,

E [∆V (X) | X(t0) = X] ≤ −η.

• (C2) There exists a constant D < ∞ such that for all X ∈ X ,

P(|∆V (X)| ≤ D) = 1.

Then {V (X(t)), t ≥ 0} converges in distribution to a random variable V , and all moments of V exist and are finite. More
specifically, we have for any r = 1, 2, . . .

E
[
V (X)r

]
≤ (2κ)r + (4D)r

(
D + η

η

)r

r!. (15)

4.2.1. Throughput optimality
We would prove the following result in this subsection.

Proposition 8. Under the condition of Theorem 3, the given policy is throughput optimal.

We would prove this result by combining fluid approximations with stochastic Lyapunov theory. Thus, let us first
introduce some necessary notations and useful lemmas. In order to distinguish from stochastic analysis, we define X ≜
(X (t), t = 0, 1, 2, . . .), in whichX (t) ≜ (Q1(t),Q2(t), . . . ,Qn(t)) in fluid domain. Then under our assumption and the queue-
length based policy, X = (X (t), t = 0, 1, 2, . . .) is a discrete-time countable Markov chain. That is, the system state is
denoted by X in the fluid approximation analysis. To establish the fluid model of X , we need several notations. Let us define
the norm of X (t) as ∥X (t)∥1 ≜

∑N
n=1 Qn(t). Let X (x) denote a process X with an initial state satisfyingX (x)(0)


1 = x. (16)
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LetAi(t) andDi(t) denote the accumulated arrival and actual departure tasks at queue i up to time-slot t , respectively.AΣ (τ )
denotes the accumulated exogenous arrivals for a given τ units of time-slots. Si(τ ) denotes the accumulated offered service
for queue i during a given τ units of time-slots. Moreover, let Gi(t) denote the accumulated number of time-slots up to
time-slot t in which the new arrivals are routed to queue i, and let Bi(t) ≜

∑t
0 1{Qi(s) > 0} denote the accumulated number

of time-slots up to time-slot t in which queue i is busy. We also adopt the convention that Ai(0) = 0, Di(0) = 0, Gi(0) = 0
and Bi(0) = 0. Therefore, we haveAi(t) = AΣ (Gi(t)) ≤ AΣ (t) andDi(t) = Si(Bi(t)) ≤ Si(t). Then the queue length Qi can be
described in an alternative form as follows

Qi(t) = Qi(0) + Ai(t) − Di(t). (17)

Let us define another processY ≜ (Q ,A,D,AΣ , S, G,B), i.e., a tuple that denotes a list of processes, and clearly, a sample
path of Y (x) uniquely determines the sample path of X (x). Then, we extend the definition of Y to each continuous time t ≥ 0
as Y (x)(t) ≜ Y (x)(⌊t⌋). Recall that a sequence of functions fn(·) is said to converge to a function f (·) uniformly over compact
(u.o.c) interval if for all t ≥ 0, limn→∞ sup0≤t ′≤t

⏐⏐fn(t ′) − f (t ′)
⏐⏐ = 0. We now consider a sequence of process

{
1
xn
Y (xn)(xn·)

}
,

which is scaled both in time and space, and show the convergence properties of the sequence in the following lemma.

Lemma 9. With probability one, for any sequence of the process {
1
xn
Y (xn)(xn·)}, where xn is a sequence of positive integers with

xn → ∞, there exists a subsequence xnk with xnk → ∞ as k → ∞ such that the following u.o.c convergences hold:

1
xnk

Q
(xnk )
i (xnk t) → qi(t) (18)

1
xnk

A
(xnk )
i (xnk t) → ai(t) (19)

1
xnk

D
(xnk )
i (xnk t) → di(t) (20)

1
xnk

A
(xnk )
Σ (xnk t) → aΣ (t) (21)

1
xnk

S
(xnk )
i (xnk t) → si(t) (22)

1
xnk

G
(xnk )
i (xnk t) → gi(t) (23)

1
xnk

B
(xnk )
i (xnk t) → bi(t) (24)

where qi, ai, di, aΣ , si, gi and bi are some Lipschitz continuous functions in [0, ∞). Hence all the functions are differentiable at
almost every time t ∈ [0, ∞), which is called regular time.

Proof. See Appendix B. □

The fluidmodel of our considered load balancing system is given by the following lemma. Note that the fluidmodel holds
for any work-conserving FIFO and queue-length based policy. By utilizing the random time-change theorem in Chapter 5 of
[31], we have the following results.

Lemma 10. Any fluid limit (qi, ai, di, aΣ , si, gi, bi) satisfies the following equations

qi(t) = qi(0) + ai(t) − di(t) (25)

ai(t) = λgi(t) (26)

di(t) = µibi(t) (27)

aΣ (t) = λt (28)

si(t) = µit (29)
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n∑
i

gi(t) = t (30)

and for any regular time t, we have

q′

i(t) =

{
λg ′

i (t) − µi, qi(t) > 0.
0, qi(t) = 0.

(31)

Proof. See Appendix C. □

Now we are well prepared to present the proof of Proposition 8 on throughput optimality.

Proof of Proposition 8. First, recall the permutation σt (·) of (1, 2, . . . ,N) which satisfies Qσt (1)(t) ≤ Qσt (2)(t) ≤ . . .Qσt (N)(t)
and ties are broken randomly. Now we can establish the following claim, the proof of which is relegated to Appendix D.

Claim 1. If qσt (1)(t) = qσt (2)(t) = qσt (m)(t) = 0 < qσt (m+1)(t) ≤ . . . ≤ qσt (N)(t) for some 1 ≤ m < N, then

N∑
n=m+1

g ′

σt (n) =

N∑
n=m+1

(
∆n(t) +

µσt (n)

µΣ

)
,

and ∆(t) satisfies the conditions in Eqs. (10) and (11) of Theorem 3.

Now, let us consider a Lyapunov function V (z) ≜ ∥z∥1. We would like to show that V̇ (q(t)) ≤ −l for some constant l > 0
whenever V (q(t)) > 0. There are two cases to consider.

Case 1: qi(t) > 0 for all i ∈ {0, 1, . . . ,N}.
In this case, by Eqs. (31) and (30), we have

V̇ (q(t)) =

N∑
n=1

q′

n(t) = λ(
N∑

n=1

g ′

n(t)) −

N∑
n=1

µi = λ −

N∑
n=1

µn = −ϵ. (32)

Case 2: For some 1 ≤ m < N , qσt (1)(t) = qσt (2)(t) = qσt (m)(t) = 0 < qσt (m+1)(t) ≤ . . . ≤ qσt (N)(t).
In this case, we have

V̇ (q(t))
(a)
=

N∑
n=m+1

q′

n(t)

(b)
=

N∑
n=m+1

λ

(
∆n(t) +

µσt (n)

µΣ

)
−

N∑
n=m+1

µσt (n)

(c)
≤

N∑
n=m+1

λ
µσt (n)

µΣ

−

N∑
n=m+1

µσt (n)

(d)
≤ −ϵ

µmin

µΣ

where (a) comes from Eq. (31); (b) follows from Claim 1; (c) holds due to the fact that
∑N

n=m+1 ∆n(t) ≤ 0when∆(t) satisfies
Eqs. (10) and (11); (d) is true since λ = µΣ − ϵ and µmin = min1≤n≤N (µn).

Therefore, combining the above two cases, yields

V̇ (q(t)) ≤ −lwhenever V (q(t)) > 0

where l ≜ −ϵµmin/µΣ > 0. This result implies that for any γ ∈ (0, 1), there exists a finite T such that V (q(T )) ≤ γ . Now,
consider any fixed sequence of processes {X (x), x = 1, 2, . . .} (for simplicity also denoted as {x}). Then, from the convergence
in Lemma 9, we have that for any subsequence {xn} of {x}, there exists a further (sub)subsequence {xnk} with probability one
such that

lim
k→∞

1
xnk

X (xnk )(xnkT )

1 =

n∑
i

|qi(T )| ≤ γ ≜ 1 − ξ .



X. Zhou et al. / Performance Evaluation 127–128 (2018) 176–193 189

This further implies that with probability one,

lim sup
x→∞

[
1
x

X (x)(xT )

1

]
≤ 1 − ξ

holds, because there is always a subsequence of {x} that converges to the same limit as lim supx→∞

[ 1
x

X (x)(xT )

1

]
.

According to Eq. (17), we have
X (x)(xT )


1 ≤ x +

∑N
i=1 Ai(xT ). Hence,

E
[
1
x

X (x)(xT )

1

]
≤ 1 + λT ≤ ∞.

Therefore, from the dominated convergence theorem, we have

lim sup
x→∞

E
[
1
x

X (x)(xT )

1

]
= E

[
lim sup
x→∞

1
x

X (x)(xT )

1

]
≤ 1 − ξ .

This result in turn implies that there exists an x0 such that for all x =
X (x)(0)


1 ≥ x0

E
[X (x)(xT )


1 −

X (x)(0)

1

]
≤ −

ξx0
2

. (33)

Now, let us turn to the stochastic analysis of the Lyapunov drift. In particular, we consider the mean drift of Lyapunov
function V (Q(t)) = ∥Q(t)∥1. We need to show that the Lyapunov function V (.) satisfies the conditions (C1) and (C2) in
Lemma 7, respectively.

For Condition (C2), we have

|∆V (Q)| =
⏐⏐ ∥Q(t0 + T )∥1 − ∥Q(t0)∥1

⏐⏐I(Q(t0) = Q)
(a)
≤ ∥Q(t0 + T ) − Q(t0)∥1 I(Q(t0) = Q)
(b)
≤ TN max(Amax, Smax)

where (a) follows from the fact that |∥x∥1 − ∥y∥1 | ≤ ∥x − y∥1 holds for any x, y ∈ RN ; (b) holds due to the assumptions that
the AΣ (t) ≤ Amax and Sn(t) ≤ Smax for all t ≥ 0 and all 1 ≤ n ≤ N , and are independent of the queue length. This establishes
the condition (C2) in Lemma 7.

For Condition (C1), we have

E [∆V (Q) | Q(t0) = Q]
=E [∥Q(t0 + T1)∥1 − ∥Q(t0)∥1 | Q(t0) = Q]
(a)
=E [∥Q(T1)∥1 − ∥Q(0)∥1 | Q(0) = Q]
(b)
≤ −

ξx0
2

where (a) follows from the i.i.d assumption of exogenous arrival and service, and the system is Markovian with respect
to the vector of queue lengths; (b) holds for T1 = x0T and V (Q(0)) ≥ x0. This directly comes from Eq. (33) and the fact
∥X (t)∥1 =

∑N
n=1 Qn(t). Hence, it establishes the condition (C1) in Lemma 7, and thus throughput optimality. □

4.2.2. State-space collapse to cone
We would prove the following result in this subsection, which combined with the throughput optimality in the last

subsection directly implies heavy-traffic delay optimality according to Theorem 2.

Proposition 11. Under the condition of Theorem 3, the state-space in steady-state collapses to the cone Kα , i.e., there exists
ϵ0 = µΣδ/(4N + 2δ) such that for all ϵ ∈ (0, ϵ0)

E
[Q(ϵ)

⊥

r]
≤ Mr (34)

holds for each r = 1, 2, . . ., in which Mr are constants that are independent of ϵ.

Before we prove Proposition 11, we first define the following Lyapunov functions and their corresponding drifts.

V⊥(Q) ≜ ∥Q⊥∥ ,W (Q) ≜ ∥Q∥
2 and W∥(Q) ≜

Q∥

2

with the corresponding one time-slot drift given by

∆V⊥(Q) ≜ [V⊥(Q(t0 + 1)) − V⊥(Q(t0))]I(Q(t0) = Q)
∆W (Q) ≜ [W (Q(t0 + 1)) − W (Q(t0))]I(Q(t0) = Q)
∆W∥(Q) ≜ [W∥(Q(t0 + 1)) − W∥(Q(t0))]I(Q(t0) = Q)
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Now, we are ready to prove Proposition 11.

Proof of Proposition 11. To establish the bounded moments of ∥Q⊥∥, based on Lemma 7, all we need to show is that the
drift of Lyapunov function V⊥(.) satisfies the two conditions for all ϵ ∈ (0, ϵ0). For condition (C2), we have

|∆V⊥(Q)|
=|∥Q⊥(t0 + 1)∥ − ∥Q⊥(t0)∥ |I(Q(t0) = Q)
(a)
≤ ∥Q⊥(t0 + 1) − Q⊥(t0)∥ I(Q(t0) = Q)
(b)
≤ ∥Q(t0 + 1) − Q(t0)∥ I(Q(t0) = Q)
(c)
≤

√
N max(Amax, Smax) (35)

where (a) follows from the fact that |∥x∥ − ∥y∥ | ≤ ∥x − y∥ holds for any x, y ∈ RN ; (b) follows from the non-expansive
property of projection and the fact thatQ⊥ is the projection onto the convex closed coneK◦

α . (c) holds due to the assumptions
that the AΣ (t) ≤ Amax and Sn(t) ≤ Smax for all t ≥ 0 and all 1 ≤ n ≤ N , and are both independent of queue lengths. This
verifies Condition (C2) in Lemma 7.

For condition (C1), we need the following result, the proof of which is relegated to Appendix E.

Claim 2. For any t ≥ 0, we have

E [∆V⊥(Q) | Q(t) = Q]

≤
1

2 ∥Q⊥(t)∥
E [(2⟨Q⊥(t),A(t) − S(t)⟩ + L) | Q(t) = Q]

where L ≜ N max(Amax, Smax)2.

Thus, based on Claim 2, in order to establish condition (C1) for all ϵ ∈ (0, ϵ0), it suffices to show

E [⟨Q⊥(t),A(t) − S(t)⟩ | Q(t) = Q] ≤ −c ∥Q⊥(t)∥ (36)

holds for all ϵ ∈ (0, ϵ0), and c is independent of ϵ.
To this end, first recall the permutation σt (·) of (1, 2, . . . ,N) which satisfiesQσt (1)(t) ≤ Qσt (2)(t) ≤ . . .Qσt (N)(t) and ties are

broken randomly. In the following, for simplicity of notation, we let Q̂(t) = (Qσt (1)(t),Qσt (2)(t), . . . ,Qσt (N)(t)), and similarly
the arrival process Â(t) = (Aσt (1)(t), Aσt (2)(t), . . . , Aσt (N)(t)) and the service vector Ŝ(t) = (Sσt (1)(t), Sσt (2)(t), . . . , Sσt (N)(t)).
Now, the left-hand-side of Eq. (36) can be written as follows.

E [⟨Q⊥(t),A(t) − S(t)⟩ | Q(t) = Q]
(a)
=E

[
⟨̂Q⊥(t), Â(t) − Ŝ(t)⟩ | Q(t) = Q

]
(b)
=

N∑
n=1

Q̂⊥n

[
λΣ

(
∆n(t) +

µσt (n)

µΣ

)
− µσt (n)

]
(c)
=

N∑
n=1

Q̂⊥n∆n(t)λΣ +

N∑
n=1

Q̂⊥,n

(
−ϵ

µσt (n)

µΣ

)

≤

N∑
n=1

Q̂⊥n∆n(t)λΣ + ϵ
Q̂⊥(t)


1 (37)

where (a) comes from the fact that the cone Kα is symmetric with respect to the line 1 = (1, 1, . . . , 1); In (b), Q̂⊥n is the nth
component of the vector Q̂⊥(t) and (b) holds because of the definition of ∆(t) in Eq. (7), and the fact that the service process
is independent of queue lengths; (c) follows from the fact that λΣ = µΣ − ϵ.

Now, let us focus on the first term of Eq. (37). To establish an upper bound on it, we will first establish the following
important monotone property of Q̂⊥(t). That is,

Q̂⊥1(t) ≤ Q̂⊥2(t) ≤ · · · ≤ Q̂⊥N (t). (38)

First, in the case of α = 1, the cone Kα reduces to the line 1. Thus, it can be easily obtained that Q̂⊥n(t) = Qσt (n)(t) − Qavg(t)
where Qavg(t) =

∑N
n=1 Qn(t)/N , which satisfies the monotone property. Hence, we are only left with the task of establishing

the monotone property for the case of α ∈ (0, 1).
Note that, since Q̂∥(t) ∈ Kα , we have Q̂∥(t) =

∑N
n=1 wnb(n), where wn ≥ 0. Let I be a subset of {1, 2, . . . ,N} such that for

any i ∈ I wi > 0 and for any i /∈ I, wi = 0, i.e., the subset I contains all the index n such that wn > 0. It suffices to consider
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the case when I is nonempty. This is because when I is empty, we have Q̂∥(t) = 0, which directly implies the monotone
property since Q̂⊥(t) = Q̂(t) in this case.

Now consider the case when I is nonempty. First, we have

⟨̂Q⊥(t), b(i)
⟩ ≤ 0 (39)

holds for any i ∈ {1, 2, . . . ,N}. Moreover, for any i ∈ I

⟨̂Q⊥(t), b(i)
⟩ = 0. (40)

The inequality in Eq. (39) follows from the fact that b(i)
∈ Kα and Q̂⊥(t) ∈ K◦

α . The equality in Eq. (40) follows from the fact
that

0 = ⟨̂Q⊥(t), Q̂∥(t)⟩ =

∑
i∈I

wi⟨̂Q⊥(t), b(i)
⟩,

along with Eq. (39) and wi > 0 for all i ∈ I. Eqs. (39) and (40) enable us to establish the following claim, the proof of which
is relegated to Appendix F.

Claim 3. If m ∈ I with 1 ≤ m < N − 1, then m + 1 ∈ I.

Note that Claim 3 directly implies that there exists an m0 (which depends on Q(t)) such that for all i ≥ m0, i ∈ I and for
i < m0, i /∈ I. Hence, by Eq. (40), for all i ≥ m0

0 = ⟨̂Q⊥(t), b(i)
⟩ = α

N∑
n=1

Q̂⊥n(t) + (1 − α)Q̂⊥i(t),

which implies that for all i ≥ m0

Q̂⊥i(t) = c ≥ 0 (41)

for some constant c. This is because
∑N

n=1 Q̂⊥n(t) ≤ 0, due to the fact that 1 ∈ Kα and Q̂⊥(t) ∈ K◦
α . On the other hand, for

any i ≤ j < m0, we have

Q̂⊥i(t) ≤ Q̂⊥j(t). (42)

This holds since Q̂∥i(t) = Q̂∥j(t) and Q̂i(t) ≤ Q̂j(t). Moreover, we have

Q̂⊥m0 (t) ≥ Q̂⊥(m0−1)(t). (43)

This can be shown by contradiction. Suppose Q̂⊥(m0−1)(t) > Q̂⊥m0 (t), then

⟨̂Q⊥(t), b(m0−1)
⟩ = α

N∑
n=1

Q̂⊥n(t) + (1 − α)Q̂⊥(m0−1)(t)

> α

N∑
n=1

Q̂⊥n(t) + (1 − α)Q̂⊥m0 (t)

= ⟨̂Q⊥(t), b(m0)⟩

= 0

which contradicts with Eq. (39). Then, combining Eqs. (41) and (42) and (43), yields the fact that Q̂⊥N (t) ≥ 0 and the
monotone property in Eq. (38). As a result, we have Q̂⊥1(t) ≤ 0 since otherwise

∑N
n=1 Q̂⊥,n(t) would be strictly positive.

Having established the monotone property of Q̂⊥(t) and auxiliary results that Q̂⊥N (t) ≥ 0 and Q̂⊥1(t) ≤ 0, we can now
proceed to obtain an upper bound on the first term in Eq. (37). In particular, we can first bound it in terms of |̂Q⊥1(t)| and
the δ in Eq. (11). In particular, we have

N∑
n=1

Q̂⊥n∆n(t)λΣ ≤ −λΣδ|̂Q⊥1(t)|. (44)

This upper bound can be verified as follows. First, if Q(t) ∈ Kα , then Q̂⊥n(t) = 0 for all n, and hence Eq. (44) holds. If
Q(t) /∈ Kα , then ∆(t) satisfies the two conditions in Eqs. (10) and (11) in Theorem 3, which specify the construction process
of ∆(t). In particular, each ∆(t) that satisfies the two conditions can be constructed as follows. To begin with, all the ∆n(t)
is 0. Then, according to the condition in Eq. (11), we should first decrease ∆N (t) by the amount of δ, and increase ∆1(t) by
the amount of δ. After this, the left-hand-side of Eq. (44) is equal to λΣ

(
δQ̂⊥1(t) + (−δ)̂Q⊥N (t)

)
, which is upper bounded by

−λΣδ|̂Q⊥1(t)|, since Q̂⊥N (t) ≥ 0 and Q̂⊥1(t) ≤ 0. Next, due to the condition in Eq. (10) and the fact that
∑N

n=1 ∆n(t) = 0,
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any further procedure (if needed) for the construction of ∆(t) can only take the following way: it decreases some ∆i(t) by a
certain amount (say c1) where i ≥ k, and then increase some ∆j(t) by the same amount c1 where j ≤ k. We claim that any of
this procedure cannot increase the value of the left-hand-side of Eq. (44) due to the monotone property of Q̂⊥(t). To see this,
let us denote by Lij the change of the value of the left-hand-side of Eq. (44) incurred by the procedure above. Thus, we have

Lij = −c1Q̂⊥i(t) + c1Q̂⊥j(t) ≤ 0,

which follows from the monotone property of Q̂⊥(t). Therefore, we have verified the upper bound in Eq. (44).
Next, we establish an upper bound on ∥Q̂⊥(t)∥1 in terms of |̂Q⊥1(t)| as followsQ̂⊥(t)


1 ≤ 2N |̂Q⊥1(t)|. (45)

This follows from the monotone property of Q̂⊥(t) and the fact that
∑N

n=1 Q̂⊥n(t) ≤ 0. Now, combining Eqs. (37) and (44)
and (45), we obtain that

E [⟨Q⊥(t),A(t) − S(t)⟩ | Q(t) = Q]

≤

(
ϵ −

λΣδ

2N

)Q̂⊥(t)

1

≤ −
µΣδ

4N

Q̂⊥(t)

1 whenever ϵ ≤

µΣδ

4N + 2δ

≤ −
µΣδ

4N
∥Q⊥(t)∥ (46)

where the last inequality comes from the fact that ∥Q̂⊥(t)∥1 = ∥Q⊥(t)∥1 and ∥x∥1 ≥ ∥x∥ for any x ∈ RN . This establishes the
inequality in Eq. (36) with c = µΣδ/4N and ϵ0 = µΣδ/(4N + 2δ). Hence, based on Claim 2, we have verified the condition
(C1) in Lemma 7, which directly establishes the state-space collapse result in Proposition 11. □

5. Conclusions

We have rigorously shown that even under a multi-dimensional state-space collapse, steady-state heavy-traffic delay
optimality can be achieved for a general load balancing system. This result suggests that the insight behind heavy-traffic
optimality conveyed by diffusion approximations is still valid in steady state, thus complementing and extending the
diffusion approximation results in [8,9]. Moreover, our steady-state delay optimality result might also give a possible
direction for proving the interchange of limits for the diffusion approximation results in [8,9]. By leveraging this result,
we are able to explore the greater flexibility provided by allowing a multi-dimensional state-space collapse in designing
new load balancing policies that are both throughput optimal and heavy-traffic delay optimal in steady state. Furthermore,
the proof techniques used in this paper are of independent interest as well.

Appendix. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.peva.2018.10.003.
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