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Abstract
We theoretically study the offline alignment of
language models with human preference feed-
back, under both preference label corruption and
privacy protections. To this end, we propose
SquareχPO, a simple one-line change to χPO
where the standard log-loss is replaced by a
new square loss over probability. This allows
us to advance the state-of-the-art of differen-
tially private and robust offline direct alignment.
Specifically, for the local model of label privacy,
SquareχPO is the first algorithm that attains an
optimal rate based on single-policy concentrabil-
ity, even with general function approximations.
On the robustness side against Huber label cor-
ruption, SquareχPO is the first alignment method
that has a meaningful theoretical guarantee under
general function approximations. More impor-
tantly, SquareχPO can address privacy protection
and corruption simultaneously, where an interest-
ing separation is observed, implying that the order
of privacy and corruption matters.

1. Introduction
Aligning large language models (LLMs) to human values
is crucial for their responsible deployment. Two primary
paradigms have emerged: indirect alignment, where a re-
ward model is learned before the policy optimized via Rein-
forcement Learning (RL) (Christiano et al., 2017; Ouyang
et al., 2022), and direct alignment, an RL-free approach
leveraging reparametrization techniques like Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023). Very
recently, a variant of DPO, called χPO (Huang et al., 2024),
addresses the overoptimization issue in direct alignment by
relying on a significantly weaker condition – single-policy
concentrability – making it the first offline direct alignment
method with such a guarantee.

1Wayne State University 2King Abdullah University of Science
and Technology.

Meanwhile, privacy and robustness concerns in the prefer-
ence datasets of the alignment process have gained signifi-
cant attention. Membership inference attacks expose privacy
vulnerabilities (Feng et al., 2024), while data poisoning un-
dermines label integrity (Casper et al., 2023). Recent efforts
have addressed these challenges separately, providing theo-
retical guarantees for privacy or robustness. On the privacy
side, existing theoretical work has primarily focused on
simple linear function approximations (Chowdhury et al.,
2024b; Korkmaz & Brown-Cohen, 2024), which are insuffi-
cient for practical scenarios involving non-linear reward or
policy function classes (e.g., neural networks).

Q1. For general function approximations, can we achieve
optimal (or better) rates under privacy constraints?

Contribution 1. We answer Q1 affirmatively by introduc-
ing SquareχPO, a simple variant of χPO which replaces the
log loss with a new square loss over probabilities. For pref-
erence label privacy under the local model of Differential
Privacy (DP) (Kasiviswanathan et al., 2011; Chaudhuri &
Hsu, 2011), SquareχPO achieves the optimal privacy cost,
even with general function approximations.

Moving now to the robustness side, Mandal et al. (2024)
takes an indirect approach, focusing on the linear setting,
while Chowdhury et al. (2024a) follows a DPO-style direct
method, which however only achieves a suboptimal rate for
the linear case and suffers from a non-vanishing suboptimal-
ity gap for general function approximations.

Q2. Can we improve these results under label corruption,
even for general function approximations?

Contribution 2. Our SquareχPO provides an affirmative
answer to Q2. Specifically, it not only preserves the favor-
able single-policy concentrability property of χPO, but also
achieves the optimal O(1/

√
n) rate for general function

approximations under the same random-flipping corruption
setting as in Chowdhury et al. (2024a). Furthermore, due
to the inherent boundedness of our new loss, SquareχPO is
the first alignment method to provide meaningful guarantees
under stronger Huber label corruption (Huber, 1964), match-
ing the best-known results in the non-preference feedback
offline RL setting (Zhang et al., 2022).
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Instead of studying privacy protection and robustness to
corruption separately, there is growing interest in under-
standing their interplay, driven by both practical scenarios
and theoretical insights, for example, in bandits (Zhou &
Zhang, 2024; Wu et al., 2024b; Charisopoulos et al., 2023)
or general statistical tasks; please refer to Kamath (2024)
for a wonderful recent survey.

Q3. Can we achieve privacy protection and robustness si-
multaneously, and what are the interplays between them?

Contribution 3. Our SquareχPO simultaneously addresses
privacy and robustness in offline direct alignment, uncov-
ering interesting interplays between the two. SquareχPO
is adaptive, as it does not require prior knowledge of the
specific setting while providing sharp rates. Notably, our re-
sults reveal that corruption following privacy leads to worse
bounds.

2. Preliminaries
2.1. Offline Alignment

In the offline alignment problem, there exists a pre-collected
preference dataset Dpref = {(xi, a

0
i , a

1
i , yi)}ni=1, where

each context/prompt xi is i.i.d. sampled from a distri-
bution ρ, and two responses a0i and a1i are i.i.d sampled
from a reference policy πref , i.e., a0i ∼ πref(· | xi)
and a1i ∼ πref(· | xi), and finally the preference label
yi ∈ {0, 1} is generated according to some probability
distribution, i.e., yi ∼ Ber(P⋆(a1i ≻ a0i | xi)), where
P⋆(a1i ≻ a0i | xi) ∈ [0, 1] is the probability that given
xi, a1i is preferred over a0i and Ber(·) denotes a Bernoulli
distribution. Without loss of generality, we assume that
ρ(x) > 0 for all x and πref(a | x) > 0 for all x and a.
Depending on the modeling assumption of the preference
probability P⋆(a1i ≻ a0i | xi), the (offline) alignment is
often categorized into the following two settings.

Bradley-Terry (BT) preference model (Bradley & Terry,
1952). In this setting, there exists an unknown true reward
function r⋆ : X × A → [0, Rmax] that induces the prefer-
ence probability as follows

P⋆(a1i ≻ a0i | xi) =
exp(r⋆(xi, a

1
i ))

exp(r⋆(xi, a1i )) + exp(r⋆(xi, a0i ))
.

With the preference dataset Dpref , the goal under this setting
is to learn a policy π̂ that minimizes the suboptimality gap:

SG(π̂;π⋆) := J(π⋆)− J(π̂), (1)

where J(π) := Ex∼ρ,a∼π(·|x)[r
⋆(x, a)] and π⋆ is any com-

parator policy (e.g., it could be the optimal policy maximiz-
ing J(π) or any other policy). For notation simplicity, we
will abbreviate Eπ[·] := Ex∼ρ,a∼π(·|x)[·].

2.2. χPO

To address the overoptimization issue in DPO, Huang et al.
(2024) recently proposed a simple variant of DPO by intro-
ducing an additional χ2-regularization term, which leads to
the following optimization1

π̂χPO = argmax
π∈Π

∑
(x,a+,a−)∈Dpref

log[σ(βhχPO(x, a+, a−))],

where hχPO(x, a+, a−) :=ϕ
(

π(a+|x)
πref (a+|x)

)
−ϕ

(
π(a−|x)

πref (a−|x)

)
and ϕ(u) := u + log u. Compared to DPO, there is an ad-
ditional linear term in ϕ(z) that introduces pessimism (Jin
et al., 2021b), which enables a suboptimality gap that only
depends on single policy concentrability (Rashidinejad et al.,
2021). On the other hand, DPO could only achieve a sub-
optimality gap in terms of all-policy concentrability coef-
ficient (Chen & Jiang, 2019) due to the lack of pessimism.
Given the stronger performance of χPO, we will mainly fo-
cus on it when we consider robustness and privacy in offline
alignment, as discussed below.

2.3. Robustness and Privacy in Preference Data

Label corruption. In practice, the preference label yi may
not be sampled from the clean distribution Ber(P⋆(a1i ≻
a0i | xi)). To characterize this, we borrow the classic Huber
corruption model from robust statistics.
Definition 2.1 (α-Huber corruption (Huber, 1964)). We
consider the following α-Huber corruption: each label is
independently sampled from (1− α)Gi + αBi, where Gi

is the clean distribution Ber(P⋆(a1i ≻ a0i | xi)) and Bi

is some arbitrary unknown Bernoulli distribution. That is,
with probability α ∈ [0, 1/2], each label is sampled from
some bad distribution.

Label privacy in the local model. The preference label is
often collected via human feedback, which could potentially
reveal each person’s private information, as discussed before.
To this end, a strong privacy protection is to ensure Local
Differential Privacy (LDP) via a local randomizer. Given the
binary data of the preference label, it is natural to consider
the classic randomized response mechanism.
Definition 2.2 (Randomized response and ε-LDP (Warner,
1965)). Let ε > 0 be the privacy parameter and y ∈ {0, 1}
be the true label. The randomized response (RR) mecha-
nismR flips y and outputs private ỹ based on the following
distribution

P [ỹ = y] =
eε

1 + eε
and P [ỹ ̸= y] =

1

1 + eε
. (2)

Interplay between corruption and LDP. In practice, cor-
ruption and LDP protection can exist together, which moti-
vates us to consider their interplay in the following settings.

1We ignore the clipping operation for the ease of presentation.
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Algorithm 1 SquareχPO for CTL and LTC

input Locally private and corrupted preference dataset
D̃pref = {

(
xi, a

0
i , a

1
i , zi

)
}ni=1 under CTL and LTC, pri-

vacy parameter ε > 0, regularization coefficient β > 0,
reference policy πref

1: Define

ϕ(u) := u+ log u (3)

hχPO,i :=ϕ

(
π(a1i | xi)

πref(a1i | xi)

)
−ϕ

(
π(a0i | xi)

πref(a0i | xi)

)
(4)

2: Optimize the following objective:

π̂←argmin
π∈Π

∑
i∈[n]

[
2σ
(
clip2Rmax

[βhχPO,i]
)
−1−c(ε)z̄i

]2
,

where c(ε) := eε+1
eε−1 and z̄i = 2zi − 1

3: output: π̂

Definition 2.3 (CTL and LTC). Given a raw preference
dataset Dpref = {(xi, a

0
i , a

1
i , yi)}ni=1 and two parameters

α ∈ [0, 1/2], ε > 0, we consider the following two set-
tings that differ in the order of corruption and label privacy
protection in the local model:

Corruption-then-LDP (CTL). The raw label yi is first
corrupted by the α-Huber model, which is then further
privatized by ε-LDP RR mechanism, leading to the final
preference dataset given by D̃pref = {(xi, a

0
i , a

1
i , zi)}ni=1.

LDP-then-Corruption (LTC). The raw label yi is first
privatized by ε-LDP RR mechanism, which is then further
corrupted by the α-Huber model, leading to the final prefer-
ence dataset given by D̃pref = {(xi, a

0
i , a

1
i , zi)}ni=1.

3. Locally Private and Robust Alignment
In this section, we study offline alignment in the BT-
preference model under privacy constraints and corruption.
We will focus on the interplay between corruption and the
label LDP (i.e., CTL and LTC).

Our proposed algorithm, SquareχPO in Algorithm 1, is
the same for both CTL and LTC, i.e., adaptive. The key
modification compared with χPO is to use a square loss
instead of the log loss, plus an additional c(ε) factor for the
private case. We will dive into the intuition about the choice
of our loss function in the sequel. Before that, we remark
that the clipping clipR(u) = max{min{u,R},−R} with
R = 2Rmax is adopted in χPO as well, mainly used for a
slightly tighter theoretical bound.

3.1. Intuition behind SquareχPO

We now discuss our new loss function in SquareχPO, high-
lighting the intuition on how it helps to handle corruption

and privacy protection. It is worth noting that our new loss
function could be of its own interest even in the standard
scenario, i.e., non-private and non-corrupted cases, with
DPO-type (rather than χPO-type) reparameterization.

1. Square loss over probability. Without privacy protection
(c(ε) = 1), our new loss function essentially reduces to∑

i∈[n]

(pi(π)− zi)
2, (5)

where we define pi(π) := σ
(
clip2Rmax

[βhχPO,i]
)
, while

DPO and χPO essentially adopts the standard log-loss, i.e.,

−zi log pi(π)− (1− zi) log(1− pi(π)). (6)

The loss in (5) is also often referred to as Brier score (Brier,
1950) in probabilistic predictions. One direct observation
here is that the Brier score is always upper bounded by 1
while the log-loss can be unbounded, which implies that
label corruption under log-loss may have a larger impact
than that under the Brier score.

2. Converting to ±1 with c(ε) scaling. Instead of working
with zi ∈ {0, 1}, we convert it to z̄i = 2zi − 1 ∈ {1,−1}
and we similarly update the probability part. The reason
is, from (2) of RR, we can easily see that the private mean
(under ±1) is 1/c(ε) of the true mean (probability). This
implies that the c(ε) factor in front of the private data leads
to an unbiased estimate of the true probability, which es-
sentially follows from the same intuition as in private mean
estimation under RR, since the empirical average mean esti-
mator can also be written as the solution to a square loss.
Remark 3.1. We mention in passing that many alignment al-
gorithms draw inspiration from binary classification for their
loss functions, in the non-private non-corrupted cases. For
instance, in addition to log-loss in DPO and χPO, SLiC (Zhao
et al., 2023) leverages the hinge loss while IPO (Azar et al.,
2024) adopts the standard square loss. The key conceptual
difference between our square loss and that of IPO lies in
the fact that the latter takes the square over the raw log-ratio
(i.e., implicit reward) while ours is a square over proba-
bility (i.e., an additional sigmoid step is applied). More
recently, Tang et al. (2024) proposed a family of loss func-
tions for alignment based on standard supervised learning,
including exponential loss, truncated quadratic loss, and
savage loss. To the best of our knowledge, our SquareχPO
is the first one that proposes to use the Brier score as the
loss. In the next section, we will demonstrate its strong
theoretical guarantees.

3.2. Theoretical Guarantees

In this section, our aim is to establish the suboptimality gap
(cf. (1)) of SquareχPO (Algorithm 1), under both CTL and
LTC, without knowledge of the setting in advance.
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We start with the same assumptions as in χPO (Huang et al.,
2024), i.e., policy realizability and bounded range.
Assumption 3.2 (Policy realizability). Fix β > 0. The
policy class Π satisfies π⋆

β ∈ Π, where π⋆
β is the optimal

policy of the following mixed χ2-regularized objective:

Jχmix

β (π) :=Eπ[r
⋆(x, a)]−β · [Dχ2(π∥πref)+DKL(π∥πref)].

The Jχmix

β (π) in χPO mixes χ2-regularization with the stan-
dard KL-regularization in DPO, which in turn leads to the
new reward reparameterization using optimal solution π⋆

β :

r⋆(x, a) = βϕ

(
π⋆
β(a|x)

πref(a|x)

)
+ Zβ,r⋆(x),

where we recall that ϕ(u) = u + log u and Zβ,r⋆(x) is
some action-independent normalization term. Thus, As-
sumption 3.2 essentially implies the implicit reward realiz-
ability under the above parameterization.

As in χPO (Huang et al., 2024), the next assumption asserts
that the implicit reward difference under any policy in Π is
upper bounded by some constant.
Assumption 3.3 (Bounded implicit reward difference). For
a parameter Vmax ⩾ Rmax, it holds that for all π ∈ Π,
x ∈ X , and a, b ∈ A,∣∣∣∣βϕ( π(a | x)

πref(a | x)

)
− βϕ

(
π(b | x)
πref(b | x)

)∣∣∣∣ ⩽ Vmax.

Finally, we will measure the theoretical performance using
the same type of single-policy concentrability as in χPO.
Definition 3.4 (L1-Concentrability). The single-policy L1-
concentrability coefficient for a policy π is given by

Cπ := Eπ

[
π(a|x)
πref(a|x)

]
,

where we recall that Eπ[·] := Ex∼ρ,a∼π(·|x)[·].

Our main result is the following suboptimality bound.
Theorem 3.5. For any given comparator policy π⋆, there
exists a proper choice of β > 0 such that when Assump-
tions 3.2 and 3.3 hold, with probability at least 1− ζ, the
output of Algorithm 1 satisfies the following suboptimality
gaps under CTL and LTC:

SGCTL(π̂;π
⋆)≲κ(π⋆)

(
c(ε)

√
log(|Π|/ζ)

n
+
√
α

)
,

SGLTC(π̂;π
⋆)≲κ(π⋆)

(
c(ε)

√
log(|Π|/ζ)

n
+
√

α · c(ε)

)
,

where a ≲ b as shorthand for a = O(b), c(ε) = eε+1
eε−1 and

κ(π⋆) := e2Rmax · Vmax

Rmax

√
Cπ⋆ is the single-policy concen-

trability related term.

Remark 3.6. Thanks to the use of RR in CTL and LTC,
our algorithm is ε-LDP. Setting ε = ∞ and α = 0 in the
above utility bounds, leads to the same bound as in χPO.
Moreover, as a by-product, the above theorem also directly
gives results for privacy-only and corruption-only settings.
Furthermore, it can be easily leveraged to establish bounds
for the setting where corruption happens both before and
after local privacy with a simple summation of the two
bounds above. We stress that, as in Huang et al. (2024), we
consider a finite policy class Π for the ease of presentation.
The extension to an infinite function class can be easily
achieved via the standard covering number argument. For
example, for a linear reward model in Rd (or equivalently, a
log-linear policy class), log |Π| will roughly be Õ(d).

Interplay between local privacy and corruption. Under
CTL, the impact of local privacy parameter ε (i.e., the first
term) and corruption parameter α (i.e., the second term) is
separable (additive), while LTC introduces a multiplicative
term, adding an extra factor

√
c(ε) ⩾ 1. While these are

upper bound results, we believe the different interplay (addi-
tive vs. multiplicative) is intrinsic, supported by recent tight
results in mean estimation (Zhou & Zhang, 2024).

Comparison with prior private alignment. To the best
of our knowledge, Chowdhury et al. (2024b) is the only
related work that studies label privacy protection in offline
alignment. However, it considers the standard RL-based
approach where a reward model is explicitly learned before
the policy optimization, rather than our RL-free direct op-
timization method. More importantly, while their work is
limited to the linear reward setting, our method is the first to
provide formal guarantees under general function approxi-
mation settings with the same (optimal) privacy cost of c(ε)
and a similar single-policy concentrability dependence.

Comparison with prior robust alignment. Formal bounds
on robust DPO exist only in Chowdhury et al. (2024a) under
random-flipping corruption, where labels flip with a known
probability. This model is weaker than our Huber corruption
and equivalent to label privacy noise under RR via reparame-
terization. In this context, our main result has two significant
improvements over Chowdhury et al. (2024a): (i) Even un-
der the linear model, Chowdhury et al. (2024a) only archives
a O(1/n1/4) rate with worse all-policy concentrability de-
pendence while ours is the optimal O(1/n1/2) rate with
single-policy concentrability; (ii) For the general function
approximation setting, Chowdhury et al. (2024a) fails to
achieve a vanish suboptimality gap as n → ∞ while ours
maintains the optimalO(1/n1/2) rate. Another related work
is Mandal et al. (2024), which only considers RL-based
alignment with linear function approximations under adver-
sary corruption of both prompt (responses) and labels. In
contrast, our main focus is RL-free alignment for general
function approximations while under label-corruption only.
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A. Additional Related Work
The alignment problem has been extensively studied in the previous literature (Yu et al., 2021; Ziegler et al., 2019; Stiennon
et al., 2020; Bai et al., 2022a; Shin et al., 2023; Zhan et al., 2023; Mandal et al., 2024). Besides the private or robust alignment
related work we mentioned in the main text, we refer the readers to Sun et al. (2024a) for more general trustworthiness
in large language models and to Xiao & Zhu (2025); Touvron et al. (2023) for comprehensive surveys on large language
models. Here, we discuss some additional related work.

Alignment with Human Feedback. The most fundamental method to align LLM is Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022), which has been practically used in OpenAI (2022); Sun
et al. (2024b); Bai et al. (2022a;b). Instead of fine-tuning models by training a reward model from human feedback and
optimizing policy using Reinforcement Learning (e.g., Proximal policy optimization (PPO) (Schulman et al., 2017)), Direct
Preference Optimization (DPO) (Rafailov et al., 2023) simplifies alignment by directly optimizing the policy using human
preference data. This approach bypasses the need for a reward model and reinforcement learning method, resulting in a
more stable and efficient training process (Abdin et al., 2024). In the following, we divide related work on alignment with
human feedback based on different perspectives:

• Extended works from DPO. Taking DPO as a starting point, many preference optimization variants have emerged
to improve efficiency, stability, adaptability, or other properties. Relevant examples are Chi-Squared Preference
Optimization (χPO) (Huang et al., 2024), Rejection Sampling Optimization (RSO) (Liu et al., 2023), Identity Preference
Optimization (IPO) (Azar et al., 2024), ΨPO (Azar et al., 2024), generalized preference optimization (GPO) (Tang
et al., 2024), Direct Nash Optimization (DNO) (Rosset et al., 2024), Self-Play Preference Optimization (SPPO) (Wu
et al., 2024a), and Exploratory Preference Optimization (XPO) (Xie et al., 2024). Our SquareχPO is a variant of χPO,
where the main difference is in the loss function—more on this in the next bullet point.

• The role of loss function. Our SquareχPO is mainly different from the original χPO in the loss function used to
estimate the policy, changed from log-loss to least square loss over probabilities. Compared to the log-loss, the square
loss provides a more interpretable measure of error, avoids extreme gradient values for small probability estimates, and
ensures numerical stability. Wang et al. (2024a) explores how different loss functions affect the sample efficiency and
adaptivity in classification and RL problems. We remark that the use of the square loss is not by any means new in
RL. For example, we have temporal-difference (TD) learning with squared loss for regression (Jin et al., 2021a; Xie
et al., 2022) and Fitted Q-Iteration (FQI) (Munos & Szepesvári, 2008; Chen & Jiang, 2019), which uses least-squares
to approximate the Bellman backup. Thus, we believe that our new generalization error bound can be useful when one
aims to extend those problems to private and robust scenarios.

• Type of regularization divergence. The objective function of preference optimization can be generally written
as (reward) loss + (regularization) penalty (Xiao & Zhu, 2025). A number of different regularizers have been
proposed in the literature. Wang et al. (2023) proposes a generalized approach, f -DPO, by using f -divergences for
the regularization term, to integrate a variety of popular divergences. Our mixed χ2 divergence in SquareχPO can
be viewed as a special case of f -DPO, and it can provably alleviate overoptimization and achieve sample-complexity
guarantees based on single-policy concentrability (Huang et al., 2024). Notably, χ2-regularization has been used in a
number of RL works to derive single-policy concentrability guarantee (Wang et al., 2024b; Gabbianelli et al., 2024;
Duan et al., 2020; Zhan et al., 2022; Amortila et al., 2024b; Zhu & Zhang, 2024; Lee et al., 2021; Ma et al., 2022a;b).
Xiao et al. (2024) introduces a new regularizer called preference matching divergence which helps the LLM balance
response diversification and reward maximization. Moreover, Liu et al. (2024) shows that the SFT Loss is implicitly an
adversarial regularizer in RLHF, that provably mitigates overoptimization.

• Coverage coefficients (or concentrability coefficients). Coverage, a concept that captures how the training data
“covers” the test distribution, has played a fundamental role in offline RL (Munos & Szepesvári, 2008; Xie et al., 2021a;
Uehara & Sun, 2021; Zhan et al., 2022), offline-online (hybrid) RL (Ross & Bagnell, 2012; Xie et al., 2021b; Song
et al., 2022; Amortila et al., 2024a; Song et al., 2024), and online RL (Kakade & Langford, 2002; Bagnell et al., 2003;
Xie et al., 2022). The sub-optimality guarantees of SquareχPO obtained under the BT-preference model are based
on the single-policy concentrability, that is, the data only needs to have a good cover over the chosen comparator
policy. This is the gold standard in offline reinforcement learning due to being more effective compared with all-policy
concentrability, which requires the offline data distribution to provide good coverage over the state distributions induced
by all candidate policies.
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Privacy and robustness interplay. The interaction of privacy and robustness has been investigated in many machine learning
tasks. In the multi-arm bandits problem, the interaction of central DP and Huber corruption on rewards is investigated in Wu
et al. (2024b), while the different orders of LDP and Huber corruption of rewards feedback of bandits have been studied in
Zhou & Zhang (2024). Charisopoulos et al. (2023) study the problem of linear bandits problem, where the rewards are under
LDP and Huber model. In statistical learning, there are many works that studied the interaction of privacy and robustness in
different tasks (e.g., Kamath, 2024; Li et al., 2023; Chhor & Sentenac, 2023). Other works have studied the possibility of
privacy might imply robustness or vice-versa. For example, Georgiev & Hopkins (2022) concludes that private mechanisms
are automatically robust in many statistics problems. In contrast, Hopkins et al. (2023) shows adversarial robustness implies
differential privacy in statistical estimation. In this paper, we investigate both central DP and local DP interacting with
Huber contamination model in the offline alignment problem.

B. Generalization Bounds of Least-Square Regression under Privacy and Corruption
In this section, we provide a detailed version of our main techniques, i.e., generalization error bound of least-square
regression under privacy constraints and corruption. We mainly focus on the case where the response variable is binary,
given its immediate application in our scenarios. However, it can be easily generalized to the continuous case via random
rounding, see Zhou & Zhang (2024).

Lemma B.1. Let {(ui, y
′
i)}ni=1 be a clean dataset of n points where each point is independently sampled from ui ∼ ρ′

and y′i ∼ p(·|ui) := h∗(ui) + ηi, where {ηi}ni=1 are independent random variables such that E[y′i|ui] = h∗(ui) and
y′i ∈ {−1, 1}. Let H : U → [−1, 1] be a class of real valued functions such that h∗ ∈ H, i.e., we assume realizability.
Define the generalization error bounds for a learning algorithm’s output ĥ as

err2gen := Eu∼ρ′ [(ĥ(u)− h∗(u))2] .

Then, we have the following results across different settings:

1. Under CTL or LTC where the observed dataset is {(ui, z
′
i)}ni=1 (with z′i ∈ {−1, 1}) that is generated according to

CTL or LTC (Definition 2.3), the least-square regression solution ĥ = argminh∈H
∑n

i=1(h(ui) − c(ε)z′i)
2 (with

c(ε) = eε+1
eε−1 ) satisfies with probability at least 1− ζ

err2gen,CTL ≲ c(ε)2 · log(|H|/ζ)
n

+ α,

err2gen,LTC ≲ c(ε)2 · log(|H|/ζ)
n

+ α · c(ε) .

Remark B.2. This result can be viewed as a nontrivial generalization of the standard one in Song et al. (2022) to the private
and corrupted scenarios.

A key lemma in our proof is the following form of Freedman’s inequality.

Lemma B.3 (Lemma A.2 in (Foster et al., 2021)). Let {ui}i≤n be a real-valued martingale difference sequence adapted to
a filtration {Fi}i≤n. If |ui| ≤ R almost surely, then for any η ∈ (0, 1/R), with probability at least 1− ζ,

n∑
i=1

ui ≤ η

n∑
i=1

Ei−1[u
2
i ] +

log(1/ζ)

η
,

where Ei−1[·] := E[·|Fi−1].

Now we are ready to prove our generalization bound.

Proof of Lemma B.1. We start with CTL and the other one is similar. For any fixed h ∈ H, we define

Uh
i := (h(ui)− c(ε)z′i)

2 − (h∗(ui)− c(ε)z′i)
2.

If we define the filtration Fi = σ(u1, z
′
1, . . . , ui, z

′
i) and let Ei−1[·] = E[·|Fi−1], then we have that {Dh

i }i≤n where

Dh
i := Ei−1[U

h
i ]− Uh

i
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is a martingale difference sequence adapted to {Fi}i≤n. We further notice that

Ei−1[(D
h
i )

2] ≤ Ei−1[(U
h
i )

2] = Ei−1[(h(ui)− h∗(ui))
2(h(ui) + h∗(ui)− 2c(ε)z′i)

2]

≲ c(ε)2 · Ei−1[(h(ui)− h∗(ui))
2],

where the last step holds by the boundedness of z′i and h ∈ H. Moreover, let ȳi be the intermediate corrupted label, we have

Ei−1[U
h
i ] = Ei−1[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2c(ε)z′i)]

= Ei−1[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2c(ε)z′i + 2ȳi − 2ȳi + 2y′i − 2y′i)]

= Ei−1[(h(ui)− h∗(ui))(−2c(ε)z′i + 2ȳi)]︸ ︷︷ ︸
Tprivacy

+Ei−1[(h(ui)− h∗(ui))(2y
′
i − 2ȳi)]︸ ︷︷ ︸

Tcorruption

+ Ei−1[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2y′i)]︸ ︷︷ ︸
Tstandard

.

We are going to bound each of them. For Tprivacy, due to the generation process of z′i via random response over ȳi and the
fact that each privacy noise in random response is independent of all other randomness, we have Tprivacy = 0. For Tstandard,
due to the fact that Ei−1[y

′
i|ui] = h∗(ui), we have

Tstandard = Ei−1[(h(ui)− h∗(ui))
2].

Combining all three terms, yields that

Ei−1[U
h
i ] = Ei−1[(h(ui)− h∗(ui))

2] + Ei−1[(h(ui)− h∗(ui))(2y
′
i − 2ȳi)].

Then, applying Lemma B.3 to {Dh
i }i≤n with a proper choice of η, we have∑

i

Ei−1[(h(ui)− h∗(ui))
2] +

∑
i

Ei−1[(h(ui)− h∗(ui))(2y
′
i − 2ȳi)]

≲
∑
i

Uh
i +

1

2

∑
i

Ei−1[(h(ui)− h∗(ui))
2] + c(ε)2 · log(1/ζ).

Re-arranging it leads to∑
i

Ei−1[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + c(ε)2 · log(1/ζ) +

∑
i

Ei−1[(h(ui)− h∗(ui))(2ȳi − 2y′i)].

Using a union bound over all h ∈ H, we have that∑
i

Ei−1[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + c(ε)2 · log(|H|/ζ) +

∑
i

Ei−1[(h(ui)− h∗(ui))(2ȳi − 2y′i)], ∀h ∈ H.

Let’s now use this result for ĥ, noting that
∑

i U
ĥ
i ≤ 0. So, we have∑

i

Ei−1[(ĥ(ui)− h∗(ui))
2] ≲ c(ε)2 · log(|H|/ζ) +

∑
i

Ei−1[(ĥ(ui)− h∗(ui))(2ȳi − 2y′i)

≲ c(ε)2 · log(|H|/ζ) + αn,

where the last step follows from α-Huber corruption. Finally, given the independent corruption, we can safely change from
conditional expectation to unconditional one and divide both sides by n, leading to

Eu∼ρ[(ĥ(u)− h∗(u))2] ≲ c(ε)2 · log(|H|/ζ)
n

+ α,

which completes the proof for CTL.
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LTC case. It follows the same proof flow as above and we highlight the different steps only. Now, let ỹi be the intermediate
privatized label, we have

Ei−1[U
h
i ] = Ei−1[(h(ui)− h∗(ui))(h(ui) + h∗(ui)− 2c(ε)z′i)]

= Ei−1[(h(ui)− h∗(ui))((h(ui) + h∗(ui))− 2c(ε)(z′i − ỹi + ỹi))]

= Ei−1[(h(ui)− h∗(ui))(−2c(ε)(z′i − ỹi))]︸ ︷︷ ︸
Tcorruption

+Ei−1[(h(ui)− h∗(ui))(−2c(ε)ỹi + h(ui) + h∗(ui))]︸ ︷︷ ︸
Tprivacy

.

By the unbiased property of c(ε)ỹi due to randomized response, we have

Tprivacy = Ei−1[(h(ui)− h∗(ui))
2].

Then, again, applying Lemma B.3 to {Dh
i }i≤n with a proper choice of η, we have∑

i

Ei−1[(h(ui)− h∗(ui))
2] +

∑
i

Ei−1[(h(ui)− h∗(ui))(−2c(ε)(z′i − ỹi))]

≲
∑
i

Uh
i +

1

2

∑
i

Ei−1[(h(ui)− h∗(ui))
2] + c(ε)2 · log(1/ζ).

Re-arranging it leads to∑
i

Ei−1[(h(ui)− h∗(ui))
2] ≲

∑
i

Uh
i + c(ε)2 · log(1/ζ) + Ei−1[(h(ui)− h∗(ui))(2c(ε)(z

′
i − ỹi))],

where the last term is the key difference with an additional c(ε) factor. Following the same argument as in CTL, we have
that under LTC

Eu∼ρ[(ĥ(u)− h∗(u))2] ≲ c(ε)2 · log(|H|/ζ)
n

+ αc(ε).

C. Additional Details on Section 3
In this section, we provide the proof of our main results in Section 3, which directly follows from Theorem C.1 and
Lemma C.2 below. As we already mentioned, our proof is modular once we have the generalization error bounds. To
provide more intuition on this, we first present the following meta theorem, which is a simple adaptation from the proof
in Huang et al. (2024) to our SquareχPO.

Theorem C.1 (Meta Theorem for SquareχPO under BT). Under the BT-preference model, let Assumptions 3.2 and 3.3
hold. Define r̂(x, a) := βϕ

(
π̂(a|x)
πref(a|x)

)
for any output policy of SquareχPO (Algorithm 1). Then, we have

J (π⋆)− J(π̂) ⩽
2Vmax

Rmax

√
Cπ⋆ · err2stat + β · Cπ

⋆

+ 2β−1 · V
2
maxerr

2
stat

R2
max

,

where

err2stat = Eπref ,πref

[(
clip2Rmax

[∆̂]− clip2Rmax
[∆⋆]

)2]
,

with ∆̂ := r̂(x, a)− r̂(x, b) and ∆⋆ := r⋆(x, a)− r⋆(x, b). Furthermore, by taking β =
√

2
Cπ⋆ · Vmaxerrstat

Rmax
, we have

J (π⋆)− J(π̂) ≲
Vmax

Rmax

√
Cπ⋆ · err2stat .
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Proof. The above result largely follows from the proof of Theorem E.1 in Huang et al. (2024). The key in their proof is
the translation from working with policy to working with the implicit reward r̂ define above, i.e., Lemma E.2 in Huang
et al. (2024). With this, one can follow the standard proof for RLHF to arrive at the above result by relying on the fact that
Cπ = 2Dχ2(π∥πref) + 1. Note that since our SquareχPO uses the same re-parametrization function ϕ as in χPO, so the
above argument via their Lemma E.2 still works.

With this meta theorem, all we need to do is to bound err2stat under CTL and LTC, respectively, which will directly lead
to our main results in Theorem 3.5. At a high level, without clipping, err2stat can be bounded by directly leveraging our
generalization error bound under realizability (Lemma B.1) and mean-value theorem to handle the non-linearity of σ(·)
function. Here, the main reason for us to do the clipping is to ensure that the cost due to non-linearity is O(ecRmax) (for
some constant c > 0) rather than the worse bound O(ecVmax). Due to this additional clipping, we have to carefully show
that clipping will not impact our analysis, by showing that realizability is still satisfied. This should not be a surprise given
the boundedness of r∗ and all we need in the analysis is the reward difference.

Formally, we have the following bounds on err2stat under CTL and LTC, respectively.
Lemma C.2. Under the same conditions of Theorem C.1, err2stat for SquareχPO in Algorithms 1 satisfies the following
bounds:

err2stat,CTL ≲ e4Rmax

(
c(ε)2 · log(|Π|/ζ)

n
+ α

)
,

err2stat,LTC ≲ e4Rmax

(
c(ε)2 · log(|Π|/ζ)

n
+ α · c(ε)

)
.

Proof. Local model. By using the implicit reward function, we can re-write Step 3 in Algorithm 1 as

r̂ = argmin
r∈RΠ

∑
i∈[n]

[
2σ
(
clip2Rmax

[
r(xi, a

1
i )− r(xi, a

0
i )
])
− 1− c(ε)z̄i

]2
,

where

RΠ :=

{
r(x, a) = β · ϕ

(
π(a | x)
πref(a | x)

)
: π ∈ Π

}
,

and z̄i = 2zi − 1 ∈ {1,−1}. In order to apply our generalization error bound in Lemma B.1, we can do the following map-
pings: for any r ∈ RΠ, we map it to a function h ∈ Hwith |H| ≤ |Π| via h(ui) := 2σ

(
clip2Rmax

[
r(xi, a

1
i )− r(xi, a

0
i )
])
−

1 ∈ [−1, 1] with ui = (xi, a
1
i , a

0
i ). Moreover, the label z̄i is mapped to z′i and the distribution over prompts and actions is

mapped to ρ′ in Lemma B.1. With such a mapping, all we need to check is the realizability, i.e., there exists an h∗ ∈ H
defined below such that for the true clean preference label yi ∈ {0, 1}

E[y′i|ui] = E[2yi − 1|ui] = h∗(ui) := 2σ
(
clip2Rmax

[
r̃∗(xi, a

1
i )− r̃∗(xi, a

0
i )
])
− 1, (7)

where h∗ is mapped from r̃∗ := β · ϕ
(

π∗
β(a|x)

πref(a|x)

)
, which satisfies r̃∗ ∈ RΠ (hence h∗ ∈ H), because of policy realizability

π∗
β ∈ Π. To verify that (7) indeed holds, we note that

clip2Rmax
[r̃⋆(x, a)− r̃⋆(x, b)] = clip2Rmax

[r⋆(x, a)− r⋆(x, b)] = r⋆(x, a)− r⋆(x, b),

where the first equality holds by the folklore fact that r̃∗ is equivalent to r∗ up to an action-independent normalization factor,
which gets canceled in the reward difference, and the second equality holds by the boundedness of true reward r∗ ∈ [0, Rmax].
Applying σ function to both sides and noting that under the BT-preference model E[yi|ui] = σ(r∗(xi, a

1
i )− r∗(xi, a

0
i )),

yields the realizability condition in (7).

Thus, we can now safely apply Lemma B.1 to obtain results for the local model. In particular, for CTL, we have

Eu∼ρ[(ĥ(u)− h∗(u))2] = Eπref ,πref

[(
σ(clip2Rmax

[∆̂])− σ(clip2Rmax
[∆⋆])

)2]
≲ c(ε)2 · log(|Π|/ζ)

n
+ α,

which directly leads to our conclusion by a standard mean-value theorem argument to get rid of σ function. The same
argument applies to LTC case.
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