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Abstract
Policy Optimization (PO) is a cornerstone of mod-
ern reinforcement learning (RL), with applica-
tions ranging from robotics and healthcare to train-
ing large language models. However, the growing
use of PO in sensitive domains raises pressing pri-
vacy concerns. In this paper, we initiate the study
of differentially private policy optimization (PO).
We begin by defining a suitable notion of differen-
tial privacy tailored to PO, addressing challenges
unique to its on-policy learning dynamics and the
definition of the privacy unit. Focusing on policy
gradient (PG) with the REINFORCE estimator,
we propose a differentially private variant and
analyze its sample complexity. Our results estab-
lish bounds for both first-order stationary point
(FOSP) convergence and global optimality, show-
ing that privacy can be achieved with provably
lower-order overhead.

1. Introduction
Policy Optimization (PO) is one of the most widely used
methods in Reinforcement Learning (RL), with applications
spanning games (Silver et al., 2016), robotics (Levine &
Koltun, 2013), healthcare (Yu et al., 2021), and, more re-
cently, the training of large language models (Ouyang et al.,
2022; Guo et al., 2025). Unlike value-based RL, PO directly
optimizes the policy and encompasses a variety of algo-
rithms such as vanilla policy gradient (PG) (Williams, 1992;
Sutton et al., 1999), natural policy gradient (NPG) (Kakade,
2001), trust region policy optimization (TRPO) (Schulman
et al., 2015), proximal policy optimization (PPO) (Schulman
et al., 2017) and more recently, group relative policy opti-
mization (GRPO) (Shao et al., 2024). Due to its popularity,
there is a rich literature that provides various theoretical un-
derstandings of different PO methods (e.g., computational
efficiency or sample complexity) (Agarwal et al., 2021b;
Yuan et al., 2022; Shani et al., 2020; Liu et al., 2019).

As PO becomes increasingly prevalent in real-world appli-
cations, privacy concerns are emerging as a critical chal-
lenge. For instance, in personalized medical care, patient
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interactions—where the state represents medical history,
the action corresponds to prescribed medication, and the
reward reflects treatment effectiveness—constitute sensitive
data that must be protected. Similarly, in RL-based training
of large language models, user prompts may contain pri-
vate information that requires protection. Addressing these
privacy concerns is essential for ensuring the responsible
deployment of PO methods in sensitive domains.

In this paper, we initiate the study of differentially private
policy optimization, making the following key contributions.
First, we formally define a suitable notion of differential pri-
vacy (DP) (Dwork et al., 2006) for PO, highlighting its dis-
tinctions from the standard DP definitions used in supervised
learning. These differences stem from the unique learning
dynamics and the notion of the privacy unit in PO. Second,
as an initial step, we focus on the most basic yet fundamen-
tal PO method—policy gradient with REINFORCE—and
develop a differentially private variant. Beyond providing
formal privacy guarantees, we also establish sample com-
plexity bounds for this method, analyzing both convergence
to a first-order stationary point (FOSP) and global optimal-
ity. Notably, all of our sample complexity bounds consist
of two components: the leading terms match the standard
non-private results in Yuan et al. (2022), while the privacy
cost appears as lower-order additive terms.

2. Preliminaries
Policy optimization (PO) in bandit. In this work, instead
of considering a general Markov decision process (MDP),
we focus on the simpler bandit formulation, which allows
us to easily demonstrate the key ideas. We note that general-
izing it to MDP is standard, as done in the literature (Yuan
et al., 2022). This bandit formulation already captures many
interesting real-world applications, such as personalized
medical care (Zhou et al., 2023) and alignment/reasoning
training in large language models (LLMs) (Ouyang et al.,
2022). In particular, given an initial state s ∈ S (e.g., a
medical status or a prompt in LLMs) sampled from a dis-
tribution ρ, an action a ∈ A (e.g., a medical prescription
or a response in LLMs) is generated according to a policy
π and a reward R(s, a) ∈ [−Rmax, Rmax] is observed. In
policy optimization, we parameterize the policy π by πθ

with θ ∈ Θ = Rd (e.g., a neural network), and the goal is to
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leverage interactions (sample trajectories) to find an optimal
policy that maximizes the following objective:

J(θ)
def
= Es∼ρ,a∼πθ(·|s) [R(s, a)] .

Vanilla policy gradient (PG). One simple and direct ap-
proach to solving the above policy optimization problem is
via vanilla policy gradient, given by

θt+1 = θt + η∇J(θt),

where η > 0 is some learning rate, ∇J(θt) is the gradient
at step t, and θ1 is some initial value. The gradient can be
written as follows by the classic policy gradient theorem

∇J(θ) = Es∼ρ,a∼πθ(·|s) [R(s, a)∇θ log πθ(a|s)] .

However, in practice, it is often hard to compute the full
gradient above due to both statistical (e.g., without knowing
ρ) and computational (averaging over all possible trajecto-
ries) issues. Instead, we will build an unbiased estimator
of it using samples. One classic gradient estimator is the
REINFORCE (Williams, 1992), given by

∇̂mJ(θ) :=
1

m

m∑
i=1

R(si, ai)∇θ log πθ(ai|si), (1)

where m > 0 is the batch size for a batch of i.i.d on-policy
samples {(si, ai)}mi=1, where si ∼ ρ and ai ∼ πθ(·|si).
With this gradient estimator used in every step t ∈ [T ], the
overall sample complexity is given by N = Tm.

Standard sample complexity. In the standard non-private
case, previous work has established various sample com-
plexity bounds for PG with REINFORCE (Yuan et al., 2022;
Liu et al., 2020; Zhang et al., 2021). The typical result is
that for an accuracy of α > 0, for either first-order station-
ary point of J(θ) or the global optimum, the required total
sample is on the order of N = O

(
1
αk

)
for some k ∈ R,

depending on the specific scenarios, see Yuan et al. (2022).

In this paper, our goal is to formally introduce differential
privacy (DP) into the problem of policy optimization and
derive the sample complexity bounds under privacy.

3. Differential Privacy in Policy Optimization
We first recall the standard DP definition with a fixed dataset.

Definition 1 (Dwork et al. (2006)). A randomized mech-
anism M satisfies (ε, δ)-DP if for adjacent datasets D,D′

differing by one record, and ∀S ⊆ Range(M):

P[M(D) ∈ S] ⩽ eε · P[M(D′) ∈ S] + δ.

This standard DP notion can be directly used in super-
vised learning problems with D being a set of i.i.d samples

{(xi, yi)}Ni=1 from an unknown distribution and M(D) be-
ing the final policy. This has been utilized in private empiri-
cal risk minimization (ERM) (Chaudhuri et al., 2011; Bass-
ily et al., 2014) as well as private stochastic optimization
(both convex and non-convex), e.g., Bassily et al. (2019).
For example, the optimal excess population loss for stochas-

tic convex optimization is Oδ

(√
1
N +

√
d

Nε

)
for (ε, δ)-DP.

One may attempt to adopt the above notion to PO with the
dataset D being {(si, ai)}Ni=1 and M(D) being the final
policy. However, this does not make too much sense because
(i) there is no such a fixed dataset in policy gradient as the
actions are generated in the on-policy fashion, i.e., using the
most recent policy; (ii) the neighboring relation of differing
in one sample (si, ai) (i.e., privacy unit) actually does not
hold as changing one sample will lead to difference in all
future samples due to different policy onward. Thus, we
need a new definition that can address the above two issues.

To this end, we borrow the idea from private online bandit
and RL literature (Vietri et al., 2020; Chowdhury & Zhou,
2022), which essentially considers a set of “users” as the
dataset. For instance, the dataset could be N unique patients
interacting with the learning agent, and each user has an
initial state (e.g., medical status), which is distributed ac-
cording to ρ. We can fix the “users” in advance (or arrive
online) and the privacy unit is now for each patient, hence
resolving both issues above. Moreover, the set of “users”
can also represent N prompts in the training of LLMs, with
each “user” contributing one prompt. Note that although we
use “users” to align with personalization application, this is
still an item-level DP, as each “user” appears only once (as
a patient or prompt). The learning agent can interact with
each user to observe (s, a) and R(s, a) dynamically. With
the above notion of dataset, the privacy protection in PO is
that changing one “user” in the dataset will not change the
final policy too much, leading to the following definition.

Definition 2 (DP in PO). Consider any policy optimization
algorithm M interacting with a set D of N “users” and
M(D) being the final output policy. We say M is (ε, δ)-
DP if for adjacent datasets D,D′ differing by one “user”,
and ∀S ⊆ Range(M):

P[M(D) ∈ S] ⩽ eε · P[M(D′) ∈ S] + δ.

Remark 1. We emphasize once again that the above DP no-
tion is defined for PO in RL, analogous to the standard DP in
statistical learning (e.g., supervised learning). Vanilla policy
gradient is merely one specific method, just as (stochastic)
gradient descent is a particular method for stochastic op-
timization. In this paper, we aim to design a private PG
method and analyze its sample complexity. In the future, as
the next step, one can also consider designing private ver-
sions of other PO methods, such as natural policy gradient
(NPG) and proximal policy optimization (PPO).
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Algorithm 1 Differentially Private Policy Gradient (DP-PG)

input Number of “users” N , batch size m, privacy parame-
ters ε, δ, learing rate η

1: Initialize policy parameter θ1 ∈ Θ and set T = N/m
2: for t = 1 to T do
3: Compute gradient estimator ∇̂mJ(θt) using the t-th

fresh batch of “users” via (1)
4: Add noise ∇̃mJ(θt) = ∇̂mJ(θt) +N (0, σ2Id)

5: Update policy parameter θt+1 = θt + η∇̃mJ(θt)
6: end for

4. Differentially Private Policy Gradient
In this section, we present a private version of policy gra-
dient with the REINFORCE estimator. At a high level, it
is a one-pass mini-batch stochastic gradient ascent with
additional Gaussian noise for privacy protection.

Our algorithm named DP-PG is given in Algorithm 1. It
will run T -step update with T = N/m due to the one-pass
algorithm. For each step t, we first leverage a fresh batch of
“users” to construct an unbiased estimator ∇̂mJ(θ). Then, a
Gaussian noise with variance σ2 at each dimension is added,
where σ2 depends on the privacy parameters.
Remark 2. The main reason for one-pass here is to ensure
that ∇̂mJ(θt) is an unbiased estimator of the true gradient,
similar to one-pass SGD for stochastic optimization. This
also leads to a simpler privacy analysis. Our DP-PG can
also be used in the online setting where a stream of “users”
arrive sequentially, as in standard online RL/bandits.

Theorem 1 (Privacy guarantee). Assume for any s ∈ S and
θ ∈ Θ, there exists a constant G such that ∥∇θ log πθ(a |
s)∥ ⩽ G. Then, setting σ2 =

8 ln(1.25/δ)R2
maxG

2

m2ε2 in Algo-
rithm 1 ensures (ε, δ)-DP as in Definition 2.

The above result directly follows from the privacy guarantee
of the Gaussian mechanism and (adaptive) parallel compo-
sition due to our one-pass algorithm. The assumption of G
is satisfied by softmax policy as well as Gaussian policy. In
fact, they satisfy an even stronger condition in Assumption 1,
as will be discussed shortly.
Remark 3. By the so-called billboard lemma (Hsu et al.,
2016), our DP-PG also satisfies the commonly used joint dif-
ferential privacy (JDP) in private online RL/bandits (Vietri
et al., 2020; Shariff & Sheffet, 2018; Chowdhury & Zhou,
2022; Zhou, 2022). Roughly speaking, JDP guarantees that
changing one “user” (say u) will not change all the actions
prescribed to all other “users” except u.

5. Sample Complexity under Privacy
In this section, we aim to establish the sample complexity
bounds of our DP-PG for both first-order stationary point
(FOSP) and global optimum convergence.

5.1. First-order Stationary Point Convergence

We start with the sample complexity for FOSP convergence.
This result is not only of its own importance, but will also
be useful for our later result on the global optimum conver-
gence. In particular, we will consider the following general
class of policies, which is widely studied in previous non-
private work and also includes commonly used policies such
as softmax and Gaussian policy (Yuan et al., 2022).
Assumption 1 (Lipschitz Smoothness (LS)). There exist
constants G,F > 0 such that for every state s ∈ S, the
gradient and Hessian of log πθ(· | s) of any θ ∈ Θ satisfy

∥∇θ log πθ(a | s)∥ ⩽ G and ∥∇2
θ log πθ(a | s)∥ ⩽ F.

Remark 4. For simplicity, as in previous work, we will
often view G and F as constants Θ(1), hence omitted in the
sample complexity bound.
Theorem 2 (FOSP convergence). Under the same setting
of Theorem 1 and Assumption 1, there exists a proper pa-
rameter choices of m and η, such that

E
[
∥∇J(θU )∥2

]
⩽ O

 1√
N

+

(√
d

Nε

)2/3
 , (2)

where θU is uniformly sampled from {θ1, . . . , θT }.
Remark 5. Several remarks are in order. First, we can see
that the first term in (2) matches the previous non-private
term, i.e., for an accuracy of α, the sample complexity is
O(1/α4) (Yuan et al., 2022); Second, the privacy cost is a
lower order additive term (for constant ε and d), i.e., the
additional sample complexity due to privacy is Oδ

( √
d

α3ε

)
.

5.2. Global Optimum Convergence

We now turn our focus to the global optimum convergence
in the sense of average regret, i.e., J∗ − 1

T

∑T
t=1 E [J(θt)].

Following the non-private work (Yuan et al., 2022), we will
also consider two different scenarios and aim to establish
the corresponding sample complexities in the private case.

5.2.1. FISHER-NON-DEGENERATE PARAMETERIZATION

In the first scenario, in addition to Assumption 1, we further
assume the following two conditions on the policy class,
both of which are commonly used in the non-private case.

The first condition is the so-called Fisher-non-degenerate
policy, formally defined below.
Assumption 2 (Fisher-non-degenerate, adapted from As-
sumption 2.1 of Ding et al. (2022)). For all θ ∈ Rd, there
exists µ > 0 s.t. the Fisher information matrix Fρ(θ) in-
duced by policy πθ and initial state distribution ρ satisfies

Fρ(θ)
def
= Es∼ρ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
⩾ µId.
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This assumption is commonly used in the literature on non-
private PG methods (Yuan et al., 2022; Ding et al., 2022;
Agarwal et al., 2021a; Liu et al., 2022). As shown in Sec
B.2 in Ding et al. (2022), this assumption is satisfied by the
Gassuian policy and even certain neural policies.

The next condition is the so-called compatible function ap-
proximation, which is also a common assumption in the
PG literature to handle function approximation error in the
non-tabular case.
Assumption 3 (Compatible, adapted from Assumption 4.6
in Ding et al. (2022)). For all θ ∈ Rd, there exists αbias > 0
such that the transferred compatible function approximation
error satisfies

Es∼ρ,a∼πθ∗ (·|s)
[
(Aπθ (s, a)−u∗⊤∇θ log πθ(a|s))2

]
⩽ αbias,

where πθ∗ is an optimal policy and u∗ = (Fρ(θ))
†∇J(θ).

Remark 6. The intuition behind “compatible” here is that we
are approximating the advantage function Aπθ (s, a) using
the ∇θ log πθ(a|s) as the feature vector; The “transfer error”
here means that we are shifting to the expectation in terms
of an optimal policy (rather than the current policy). The
approximation error αbias is zero for a softmax tabular policy,
and the error is small when πθ is a rich neural policy. (Ding
et al., 2022; Liu et al., 2022; Wang et al., 2019).

With the above two additional assumptions along with the
LS assumption in Assumption 1, we have the following
important result, i.e., the objective J(θ) satisfies the so-
called relaxed weak gradient domination.
Lemma 1 (Lemma 4.7 in Ding et al. (2022)). If the policy
πθ satisfies Assumptions 1, 2 and 3, then

J∗ − J(θ) ⩽
G

µ
∥∇J(θ)∥+

√
αbias.

This lemma essentially allows us to easily translate a guar-
antee in terms of FOSP to a certain global optimum con-
vergence. This leads to our next main result with its proof
given in Appendix B.
Theorem 3. Consider the same setting of Theorem 2 and
further let Assumptions 2 and 3 hold. Then, for any α > 0,
Algorithm 1 enjoys the following average regret guarantee

J∗ − 1

T

T∑
t=1

E [J(θt)] ⩽ O(α) +O (
√
αbias) ,

when the sample size satisfies N ⩾ O
(

1
α4µ4 +

√
d

α3µ3ε

)
.

Remark 7. In the above bound, we explicitly include the
parameter µ to clearly illustrate its impact. The first term
O
(

1
α4µ4

)
matches the non-private one in Yuan et al. (2022)

while the second term is the privacy cost. As we can see, for
both terms, there exists an additional 1/µ factor compared
to the sample complexity of FOSP. This indicates that for
very small but still positive µ, our bound could be large.

5.2.2. TABULAR SOFTMAX WITH LOG-BARRIER
REGULARIZATION

In this section, we move to the second scenario for our study
of global convergence where we consider the tabular case
with the classic softmax policy:
Definition 3 (Tabular softmax policy). Consider a finite
state space S and action space A. For any state-action pair
(s, a) ∈ S ×A, the softmax policy is given by

πθ(a | s) = exp(θs,a)∑
a′∈A exp(θs,a′)

,

where θ ∈ R|S||A|.

One key motivation here is to leverage the tabular structure
and the specific property of softmax policy to establish a
sample complexity of global optimum convergence that is
independent of the parameter µ. To this end, as in the non-
private case (Agarwal et al., 2021a; Yuan et al., 2022), we
will consider a regularized problem, whose FOSP turns out
to be an approximate global optimal solution of the unreg-
ularized (original) objective, for proper choice of regular-
ization. In particular, we consider the following log-barrier
regularization objective:

Jλ(θ)
def
= J(θ)− λEs∼UnifS [KL(UnifA, πθ(·|s))]

= J(θ) +
λ

|A||S|
∑
s,a

log πθ(a|s) + λ log |A|, (3)

where the KL divergence is KL(p, q) = Ex∼p

[
log p(x)

q(x)

]
,

Unifχ denotes the uniform distribution over a set χ and
λ > 0 is the regularization constant.

We will run our DP-PG over this regularized objective by
using the sample-based gradient estimator at each step with
proper choices of batch size and learning rate. Then, we
have the following main result regarding the global optimum
convergence in terms of the unregularized J(θ). The proof
is given in Appendix C.
Theorem 4. Consider Algorithm 1 applied to Jλ(θ). For
any m > 0, setting σ2 =

8 ln(1.25/δ)·R2
maxG

2

m2ε2 ensures (ε, δ)-
DP. Further, there exist proper choices of parameters for m
and η, such that the following holds

J∗ − 1

T

T∑
t=1

E [J(θt)] ⩽ O(α),

when the sample size satisfies N ⩾ O
(

1
α6 +

√
d

α9/2ε

)
.

Remark 8. The first term in the sample complexity bound
matches the non-private one in Yuan et al. (2022), while the
second term is the lower-order privacy cost (for constant ε
and d). We note that while the dependence on α is worse
than the previous one, there is no dependence on µ in the
bound, which could offer benefits when µ is quite small.
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A. Proof of Theorem 2
A.1. ABC Assumption and Smoothness

Lemma 2 (ABC). There exists constants A,B,C ⩾ 0 such that the policy gradient estimator satisfies:

E
[∥∥∥∇̃mJ(θ)

∥∥∥2] ⩽ 2A(J∗ − J(θ)) +B
∥∥∥∇Ĵ(θ)

∥∥∥2 + C, (4)

where ∇Ĵ(θ) := Es,a[R(s, a)∇θ log(πθ(a|s))], and A = 0, B = 1− 1/m,C =
R2

maxG
2

m + dσ2

Proof. For notation simplicity, we let gθ(τi) := R(si, ai)∇θ log πθ(ai|si). Thus, we have ∇̃mJ(θ) = 1
m

∑
i gθ(τi) + Z.

Notice that E[gθ(τi)] = E
[
∇̃mJ(θ)

]
= ∇Ĵ(θ), cause Z is the Gaussian bias, which expectation is 0.

Now, we have

E
[∥∥∥∇̃mJ(θ)

∥∥∥2] = E

∥∥∥∥∥ 1

m

∑
i

gθ(τi) + Z

∥∥∥∥∥
2


= E

∥∥∥∥∥ 1

m

∑
i

gθ(τi)

∥∥∥∥∥
2
+ E

[
∥Z∥2

]
+ 2 · E

[〈
1

m

∑
i

gθ(τi), Z

〉]

= E

∥∥∥∥∥ 1

m

∑
i

gθ(τi)

∥∥∥∥∥
2
+ dσ2 + 0

= E

∥∥∥∥∥ 1

m

∑
i

gθ(τi)−∇Ĵ(θ) +∇Ĵ(θ)

∥∥∥∥∥
2
+ dσ2

=
∥∥∥∇Ĵ(θ)

∥∥∥2 + E

∥∥∥∥∥ 1

m

∑
i

gθ(τi)−∇Ĵ(θ)

∥∥∥∥∥
2
+ dσ2

=
∥∥∥∇Ĵ(θ)

∥∥∥2 + 1

m2

∑
i

E
[∥∥∥gθ(τi)−∇Ĵ(θ)

∥∥∥2]+ dσ2

=
∥∥∥∇Ĵ(θ)

∥∥∥2 + 1

m
· E
[
∥gθ(τ1)∥2 −

∥∥∥∇Ĵ(θ)
∥∥∥2]+ dσ2.

To proceed, we need to establish an upper bound on E
[
∥gθ(τ1)∥2

]
.

In particular, we have

E
[
∥gθ(τ1)∥2

]
= E

[
|R(s1, a1)|2 ∥∇θ log πθ(a1 | s1)∥2

]
⩽ R2

maxG
2,

which follows from Assumption 1 (LS).

Hence, we conclude that:

E
[∥∥∥∇̃mJ(θ)

∥∥∥2] ⩽ (1− 1

m

)∥∥∥∇Ĵ(θ)
∥∥∥2 + R2

maxG
2

m
+ dσ2.

i.e., ABC condition in (4) is satisfied with A = 0, B = 1− 1/m,C =
R2

maxG
2

m + dσ2

7
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Lemma 3 (Smoothness under LS). Under LS assumption in Assumption 1, J(·) is L-smooth, namely
∥∥∇2J(θ)

∥∥ ⩽ L for
all θ, with

L = Rmax(G
2 + F ).

Proof. For smoothness, it suffices to bound the operator norm of Hessian, i.e.,
∥∥∇2J(θ)

∥∥.

By definition, we have

∇2J(θ) = ∇θEs∼ρ,a∼πθ(·|s) [R(s, a)∇θ log πθ(a|s)]
(a)
= ∇θ

∫
pθ(s, a) (R(s, a)∇θ log πθ(a|s)) d(s, a)

(b)
=

∫
∇θpθ(s, a) (R(s, a)∇θ log πθ(a|s))⊤ d(s, a) +

∫
pθ(s, a)

(
R(s, a)∇2

θ log πθ(a|s)
)
d(s, a)

= Es,a∼pθ

[
R(s, a)∇θ log πθ(a|s) log πθ(a|s)⊤

]
+ Es,a∼pθ

[
R(s, a)∇2

θ log πθ(a|s)
]

where in (a), we let pθ(s, a) := ρ(s)πθ(a|s), and (b) holds by chain rules.

Thus, we have

∥∥∇2
θJ(θ)

∥∥ ≤ Es,a

[
|R(s, a)| ∥∇θ log πθ(a|s)∥2

]
︸ ︷︷ ︸

T1

+Es,a

[
|R(s, a)|

∥∥∇2
θ log πθ(a|s)

∥∥]︸ ︷︷ ︸
T2

.

For T1 and T2, by Assumption 1, we have

T1 ≤ RmaxG
2, T2 ≤ RmaxF,

which hence completes the proof.

A.2. FOSP convergence

Proof.

Lemma 4 (Adapted from Theorem 3.4 in Yuan et al. (2022)). Suppose that J is smoothness and satisfy Assumption 2.
Consider the iterates θt of the PG method with step size ηt = η ∈ (0, 2

LB ), let δ0 = J∗ − J(θ0), if A = 0, we have:

E
[
∥∇J(θU )∥2

]
⩽

2δ0
ηT (2− LBη)

+
LCη

2− LBη
. (5)

where θU is uniformly sampled from {θ0, ..., θT−1}

Followed by Lemma 4, when η < 1
LB , we can imply 1

2−LBη < 1, then we can simply the equation into this:

E
[
∥∇J(θU )∥2

]
⩽

2δ0
ηT

+ LCη, (6)

where B = 1− 1/m, δ0 = J∗ − J(θ0), L = Rmax(G
2 + F ), C =

R2
maxG

2

m + dσ2, G and F are constants.

From Theorem 1, to make sure our algorithm satisfy the (ε, δ)-DP, we set σ2 =
8 ln(1.25/δ)·R2

maxG
2

m2ε2 .

8
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Based on Lemma 4 and Equation 6, choose η = min{ 1
LB ,

√
2δ0√
TLC

}, we have:

E
[
∥∇J(θU )∥2

]
⩽

2δ0LB

T
+

2
√
2δ0LC√
T

= O

(
1

T
+

√
C√
T

)

= O

(
m

N
+

1√
N

+
σ
√
md√
N

)

= O

(
m

N
+

1√
N

+

√
d

ε
√
Nm

)
.

Thus, we can determine the value of m.

To balance the terms in the convergence bound:

O

(
m

N
+

1√
N

+

√
d

ε
√
Nm

)
.

Setting m
N =

√
d

ε
√
Nm

, we solve for:

m =

(√
d

ε

)2/3

N1/3 = (1/ε)
2/3

(Nd)1/3.

Substituting back, the convergence bound simplifies to:

O

 1√
N

+

(√
d

Nε

)2/3
 .

B. Proof of Theorem 3
Proof. We know that:

E
[
∥∇J(θU )∥2

]
=

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
.

Besides, followed by Lemma 1, we obtain that:

(J∗ − J(θ))
2 ⩽

(
G

µ
∥∇J(θU )∥+

√
αbias

)2

⩽ 2
G2

µ2
∥∇J(θU )∥2 + 2αbias

which holds by (p+ q)2 ⩽ 2p2 + 2q2.

Taking expectation over both sides condition on θt, yields that

1

T

T∑
t=1

E
[
(J∗ − J(θ))2

]
⩽ 2

G2

µ2

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
+ 2αbias

(a)
= O

 1

µ2

 1√
N

+

(√
d

Nε

)2/3
+O(αbias)

9
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where (a) is hold by Theorem 2.

By applying Jensen inequality twice, we have:

1

T

T∑
t=1

E
[
(J∗ − J(θ))2

]
⩾ E

(J∗ − 1

T

T∑
t=1

J(θt)

)2
 ⩾

(
J∗ − 1

T

T∑
t=1

E [J(θt)]

)2

So we have: (
J∗ − 1

T

T∑
t=1

E [J(θt)]

)2

⩽ O

 1

µ2

 1√
N

+

(√
d

Nε

)2/3
+O(αbias)

In that case, we finally get the result:

J∗ − 1

T

T∑
t=1

E [J(θt)] = O

 1

µ

N−1/4 +

(√
d

Nε

)1/3
+O(

√
αbias).

Here, we suppose J∗ − 1
T

∑T
t=1 E [J(θt)] ⩽ O(α) +O(

√
αbias).

Hence, we have:

N ≥ O

(
1

α4µ4
+

√
d

α3µ3ε

)

C. Proof of Theorem 4
Based on softmax settings, by simple calculus, we have

∂ log πθ(a|s)
∂θs

= 1a − πs(θ), (7)

∂2 log πθ(a|s)
∂θ2s

= −H(πs(θ)),

where 1a ∈ R|A| is a vector with all zero entries except being 1 for the entry corresponding to action a, and H(πs(θ)) =
Diag(πs(θ))− πs(θ)πs(θ)

⊤.

In particular, for softmax, we can determine the G and F in Assumption 1

∥∇θ log πθ(a | s)∥ ⩽ G :=

√
1− 1

|A|

∥∇2
θ log πθ(a | s)∥ ⩽ F := 1.

C.1. FOSP of Softmax Policy

Lemma 5. The regularized gradient estimator ∇̃mJλ(θ) satisfies Lemma 2 with parameters:

A = 0, B = 1− 1

m

C =
2

m

(
1− 1

|A|

)(
R2

max +
λ2

|S|

)
+ dσ2,

10
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Specifically, we have the variance bound:

E
[∥∥∥∇̃mJλ(θ)

∥∥∥2] ⩽ (1− 1

m

)
∥∇Jλ(θ)∥2 + dσ2

+
2

m

(
1− 1

|A|

)(
R2

max +
λ2

|S|

)
.

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus ∇̃mJ(θ) = 1
m

∑m
i=1 g(τi |

θ) + Z.

From equation (3) we have the following gradient estimator

∇̃mJλ(θ) = ∇̃mJ(θ) +
λ

|A||S|
∑
s,a

∇θ log πs,a(θ).

For a state s ∈ S, we have

λ

|A||S|
∑
a∈A

∂ log πs,a(θ)

∂θs

(7)
=

λ

|A||S|
∑
a∈A

(1a − πs(θ))

=
λ1|A|

|A||S|
− λ

|S|
πs(θ)

=
λ

|S|

(
1|A|

|A|
− πs(θ)

)
,

where 1|A| ∈ R|A| is a vector of all ones.

Thus we have

∇̃mJλ(θ) = ∇̃mJ(θ) +
λ

|S|

(
1|A|

|A|
− [πs(θ)]s∈S

)
, (8)

where 1 ∈ R|S||A| and [πs(θ)]s∈S = [πs1(θ); ...;πs|S|(θ)] ∈ R|S||A| is the stacking of the vectors πs(θ).

11
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Next, taking expectation on the trajectories, we have

E
[∥∥∥∇̃mJλ(θ)

∥∥∥2] (8)
= E

[∥∥∥∥∇̃mJ(θ) +
λ

|S|

(
1|A|

|A|
− [πs(θ)]s∈S

)∥∥∥∥2
]

= E

[∥∥∥∥∇J(θ) +
λ

|S|

(
1|A|

|A|
− [πs(θ)]s∈S

)
+ ∇̃mJ(θ)−∇J(θ)

∥∥∥∥2
]

(a)
= ∥∇Jλ(θ)∥2 + E

[∥∥∥∇̃mJ(θ)−∇J(θ)
∥∥∥2]

(b)
= ∥∇Jλ(θ)∥2 + E

[∥∥∥∇̂mJ(θ) + Z−∇J(θ)
∥∥∥2]

= ∥∇Jλ(θ)∥2 +
E
[
∥g(τ1|θ)−∇J(θ)∥2

]
m

+ dσ2

= ∥∇Jλ(θ)∥2 + dσ2

+

E
[∥∥∥g(τ1 | θ) + λ

|S|

(
1
|A| − [πs(θ)]s∈S

)
−∇J(θ)− λ

|S|

(
1
|A| − [πs(θ)]s∈S

)∥∥∥2]
m

(c)
=

(
1− 1

m

)
∥∇Jλ(θ)∥2 +

E
[∥∥∥g(τ1 | θ) + λ

|S|

(
1
|A| − [πs(θ)]s∈S

)∥∥∥2]
m

+ dσ2

(d)

⩽

(
1− 1

m

)
∥∇Jλ(θ)∥2 +

2E
[
∥g(τ1|θ)∥2

]
+ 2

∥∥∥ λ
|S|

(
1|A|
|A| − [πs(θ)]s∈S

)∥∥∥2
m

+ dσ2,

where (a) and (c) holds by definition of ∇Jλ(θ); (b) holds by definition of ∇̃mJ(θ); (d) holds by (p+ q)2 ⩽ 2p2 + 2q2.

In particular, we have∥∥∥∥ λ

|S|

(
1|A|

|A|
− [πs(θ)]s∈S

)∥∥∥∥2 ⩽
λ2

|S|2

(
|S||A|
|A|2

− 2
|S|
|A|

+ |S|
)

=
λ2

|S|

(
1− 1

|A|

)
,

where the inequality is obtained by using ∥πs(θ)∥2 ⩽ 1.

As for E
[
∥g(τ1 | θ)∥2

]
, we have

E
[
∥g(τ1 | θ)∥2

]
⩽ R2

maxG
2 = R2

max

(
1− 1

|A|

)
,

where the equality is obtained by Assumption 1 with G2 =
(
1− 1

|A|

)
.

Combining above, we have that the gradient estimator ∇̃mJλ(θ) satisfies ABC assumption with

E
[∥∥∥∇̃mJλ(θ)

∥∥∥2] ⩽ (1− 1

m

)
∥∇Jλ(θ)∥2 +

2

m

(
1− 1

|A|

)(
R2

max +
λ2

|S|

)
+ dσ2,

where A = 0, B = 1− 1
m , C = 2

m

(
1− 1

|A|

)(
R2

max +
λ2

|S|

)
+ dσ2.

Lemma 6 (Regularized FOSP Convergence). Under the learning rate condition η < 1
LB , the iterates satisfy:

E
[
∥∇Jλ(θU )∥2

]
⩽

2δ0
ηT

+ LCη, (9)

where B = 1− 1/m, δ0 = J∗ − J(θ0), L = Rmax(2− 1
|A| ), and C as defined in Lemma 5.

12
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Proof. From Lemma E.3 in Yuan et al. (2022), We know that Jλ(·) is smooth and Lipschitz.

Then, based on Lemma 4, we know that:

E
[
∥∇Jλ(θU )∥2

]
⩽

2δ0
ηT (2− LBη)

+
LCη

2− LBη
.

let η < 1
LB , we can simply the equation into this:

E
[
∥∇Jλ(θU )∥2

]
⩽

2δ0
ηT

+ LCη,

where B = 1− 1/m, δ0 = J∗ − J(θ0), L = Rmax(2− 1
|A| ), C = 2

m

(
1− 1

|A|

)(
R2

max +
λ2

|S|

)
+ dσ2, G2 = 1− 1

|A| and
F = 1.

Then we need to choose proper σ to satisfy the (ε, δ)-DP. Note that the sensitivity ∆ of the gradient estimator ∇̂mJλ(θ)
is dominated by the data-dependent term. Despite introducing the regularization term λ, this term only depends on the
policy parameters θ (independent of data), thus it does not affect the sensitivity. The ℓ2-sensitivity of the gradient remains
∆ = 2RmaxG

m .

Lemma 7. let σ2 =
8 ln(1.25/δ)·R2

maxG
2

m2ε2 , the batch size m be set as: m = (1/ε)
2/3

(Nd)1/3, and η = min( 1
LB ,

√
2δ0√
TLC

),
we have:

E
[
∥∇Jλ(θU )∥2

]
⩽ O

 1√
N

+

(√
d

Nε

)2/3
 . (10)

Proof. for η = min( 1
LB ,

√
2δ0√
TLC

) we know:

E
[
∥∇Jλ(θU )∥2

]
⩽

2δ0LB

T
+

2
√
2δ0LC√
T

= O

(
1

T
+

√
C√
T

)
= O

(
m

N
+

1√
N

+
σ
√
md√
N

)
.

Plug in σ2 =
8 ln(1.25/δ)·R2

maxG
m2ε2 and m = (1/ε)2/3(Nd)1/3, we have:

E
[
∥∇Jλ(θU )∥2

]
⩽ O

(
1√
N

+ (

√
d

Nε
)2/3

)
.

C.2. Global Optimum Convergence

We first introduce an important proposition to bound our global private optimum convergence of softmax with log barrier
regularization.

Proposition 1 (Adapted from Theorem 5.2 in Agarwal et al. (2021a)). Suppose θ is such that ∥∇Jλ(θ)∥ ⩽ λ
2|S||A| . Then

for every initial distribution ρ, we have
J∗ − J(θ) ⩽ 2λ. (11)

Proof. Firstly, we define the following set of ”bad” iterates:

I+ ≜

{
t ∈ {1, . . . , T}

∣∣∣∣ ∥∇Jλ(θt)∥ ⩾
λ

2|S||A|

}
,

withλ = α
2 .

13
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From Proposition 1, we know that if ∥∇Jλ(θ)∥ ⩽ λ
2|S||A| , we have J∗ − J(θ) ⩽ 2λ.

Hence, we have:

J∗ − 1

T

T∑
t=1

J(θt) =
1

T

∑
t∈I+

J∗ − J(θt) +
1

T

∑
t/∈I+

J∗ − J(θt)

(a)

⩽
|I+|
T

· 2Rmax +
1

T

∑
t/∈I+

J∗ − J(θt)

(11)

⩽
|I+|
T

· 2Rmax +
T − |I+|

T
· 2λ

⩽
|I+|
T

· 2Rmax + 2λ

⩽
|I+|
T

· 2Rmax + α, (12)

where (a) holds by J(·) ⩽ Rmax, then J∗ − J(θt) ⩽ J∗ + J(θt) ⩽ 2Rmax.

Now we turn to bound |I+|

T∑
t=1

∥∇Jλ(θt)∥2 ⩾
∑
t∈I+

∥∇Jλ(θt)∥2 ⩾
|I+|λ2

4|S|2|A|2
.

Through a straightforward mathematical transformation, we get

|I+|
T

⩽
4|S|2|A|2

λ2
· 1
T

T∑
t=1

∥∇Jλ(θt)∥2

=
16

α2
· |S|2|A|2 · 1

T

T∑
t=1

∥∇Jλ(θt)∥2.

Thus, we have

J∗ − 1

T

T∑
t=1

J(θt)
(12)

⩽
32Rmax

α2
|S|2|A|2 · 1

T

T∑
t=1

∥∇Jλ(θt)∥2 + α.

Taking expectation over the iterations on both sides, we have

J∗ − 1

T

T∑
t=1

E [J(θt)] ⩽
32Rmax

α2
|S|2|A|2 · 1

T

T∑
t=1

E
[
∥∇Jλ(θt)∥2

]
+ α.

To guarantee that J∗ − 1
T

∑T
t=1 E [J(θt)] ⩽ α, we need to show:

1

T

T∑
t=1

E
[
∥∇Jλ(θt)∥2

]
⩽ α3,

14
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Hence, based on Equation 10 in Lemma 7, it is obvious to show that:

N ⩾ O

(
1

α6
+

√
d

α9/2ε

)
.
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