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Abstract

We study the interplay of local differential privacy (LDP) and robustness with respect to Huber
corruption and possibly heavy-tailed rewards in the context of multi-armed bandits (MABs). We consider
two different practical settings: LDP-then-Corruption (LTC) where each user’s locally private response
might be further corrupted during the data collection process, and Corruption-then-LDP (CTL) where
each user may be adversary or corrupted such that each LDP mechanism will be applied to the corrupted
data. To start with, we present the first tight characterization of high-probability mean estimation error
under both LTC and CTL settings. Leveraging this result, we then present an almost tight (up to log
factor) characterization of the minimax regret in online MABs and sub-optimality in offline MABs under
both LTC and CTL settings. One key message behind all three problems is that LTC is a more difficult
setting and leads to a worse performance guarantee compared to the CTL setting (in the minimax sense).
This interesting interplay between privacy and corruption highlights that one needs to carefully design
and analyze bandit algorithms when considering both privacy and corruption rather than treating them as
linear combinations. Along the way, several results are of independent interest. Our proposed minimax
optimal mean estimators can find application in many other scenarios. As an important by-product, we
also improved the state-of-the-art regret lower bound for locally private and heavy-tailed online MABs,
i.e., without Huber corruption.
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1 Introduction

The Multi-Armed Bandit (MAB) problem [BF85] offers a fundamental approach for sequential decision-
making under uncertainty based on only bandit feedback. Take online advertising as an illustrative example,
where the advertising platform (i.e., the central learner) sequentially and adaptively displays ads (i.e., arm)
based on users’ reward feedback (e.g., engagement score) so as to maximize the cumulative rewards. In
practice, several important factors have to be considered when designing real-world MAB algorithms, as
illustrated below using online advertising.
Privacy. The raw engagement score (which is calculated based on clicks, purchases, and time spent viewing
the ad, etc.) from a user’s device may lead to privacy leakage. For instance, when the ad is about medicine
on some rare or uncommon disease, a high engagement score might imply interest or association with
the uncommon disease. Such privacy leakage may lead to unintended personal and social consequences
as well as trust issues on the platform. One principled way to mitigate it is via local differential privacy
(LDP) [KLNRS11; DJW18], i.e., each user’s device locally adds a suitable amount of noise (depending on
the privacy mechanism and budget) to obfuscate the raw feedback before sending it out from the device (see
the yellow region in Fig. 1).
Robustness. Another important factor in real-world scenarios is the robustness of MAB algorithms under
both possibly heavy-tailed feedback and adversary corruption.
Heavy-tailed feedback. The engagement score in our example could often be heavy-tailed, i.e., non-negligible
probabilities of observing extremely high values. This might happen due to some special events and seasons
(e.g., Black Friday) or influencer interaction.
Adversary corruption. There could be malicious attacks on the engagement scores during the collection of
users’ feedback, e.g., with some probability, each score could be replaced by any arbitrary value, i.e., Huber
corruption [Hub64]. On the other hand, corruption can also happen on each user’s side before transmission,
e.g., one could manipulate or spoof interactions to skew scores. Most practically, corruption can also happen
both before and after the data transmission.

X Y Z

(1) LDP-then-Corruption (LTC)

X Y Z

(2) Corruption-then-LDP (CTL)

X Y Z

(3) C-LDP-C 

Possibly heavy-tailed data Possibly heavy-tailed data Possibly heavy-tailed data

Figure 1: The interplay between privacy and robustness (heavy-tailed data and corruption).

To tackle the above privacy and robustness issues in MABs, there has been a large related literature, which,
however, mainly investigates the two issues in an isolated way (see Appendix B for details). Motivated by
this, in this work, we are particularly interested in the following question:

Is there any interesting interplay between privacy and robustness in MABs?
Our contributions. We give an affirmative answer to the above question by unveiling a fundamental interplay
between privacy protection (in particular, local differential privacy (LDP)) and robustness under Huber
corruption and heavy-tailedness. Our main message is a separation result between two MAB settings that
differ in the order of privacy protection and corruption, i.e., LDP-then-corruption (LTC) vs. Corruption-then-
LDP (CTL). That is, under LTC, corruption happens after LDP mechanism while under CTL, corruption
happens before the LDP mechanism (see Fig. 1). To obtain our separation result for the two settings, we take
the following principled approach:
1. We first study the mean estimation problem – a cornerstone step in the analysis of stochastic MABs –
under both LTC and CTL settings. We give the first tight characterization of the estimation error in high
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probability, in terms of privacy budget, corruption level, and heavy-tailedness. Specifically, we first establish
lower bounds on the minimax error rate in high probability and then propose a unified optimal algorithm
that achieves matching worst-case upper bounds for both settings. The key observation here is that the mean
estimation error under LTC is larger than that under CTL and moreover the gap becomes larger as the privacy
requirement becomes stronger. Further, our sharp results on LTC and CTL also naturally enable us to give
tight performance bounds for the most practical setting, C-LDP-C, where corruption happens both before and
after LDP, see (3) in Fig. 1.
2. Leveraging the above tight mean estimation results, we then study both online MABs and offline MABs
under both LTC and CTL. We present an almost tight characterization (up to log factor) of the corresponding
minimax performances (i.e., regret in online MABs and sub-optimality in offline MABs) by deriving lower
bounds and proposing almost optimal algorithms. As in mean estimation, there is a separation between
LTC and CTL, i.e., LTC is a more difficult setting that leads to worse performance in the minimax sense,
highlighting the interesting interplay between privacy and robustness in MABs. All of these results also allow
us to easily handle the C-LDP-C setting.
3. Along the way, several results could be of independent interest. First, our optimal locally private and
robust mean estimators can be applied to many other applications beyond MABs. Moreover, as an important
by-product, we identify a fundamental flaw in the regret upper bound of state-of-the-art locally private online
MABs with heavy tails (i.e., without corruption), and give the first correct one.
Related Work. We discuss the most relevant related work in the main body and relegate a detailed discussion
to Appendix B. LDP with bounded/sub-Gaussian reward is first introduced to MABs in Ren et al. [RZLS20]
and later it was generalized to the heavy-tailed rewards [TWZW22]. Robust MABs under Huber corruption
have been recently studied in Kapoor et al. [KPK19], Mukherjee et al. [MTCD21], Basu et al. [BMM22],
and Agrawal et al. [AMBM23] while robust MABs concerning heavy-tailed reward date back to Bubeck et al.
[BCL13]. However, these work only study privacy and robustness separately. To the best of our knowledge,
there are only two very recent work that consider privacy and robustness in MABs simultaneously. In Wu
et al. [WZTW23], the authors consider the central DP model where the raw non-private feedback received by
the central learner can be first corrupted under Huber model. This is in sharp contrast to our local DP model,
which is not only stronger but allows us to study the order of corruption and privacy. In Charisopoulos et al.
[CEM23], the authors study linear bandits (which includes MAB as a special case) under LDP and then
Huber corruption (i.e., LTC setting). As will be discussed in Section 4, their regret bound is sub-optimal and
worse than ours when reduced to the MAB case. Note that we also study the CTL setting, which in turn
allows us to study the most practical setting C-LDP-C. Finally, our work is inspired by recent advances in
(locally) private and robust mean estimation [LBY22; CSU21; CS23]. Our key contributions are the first
high-probability concentration bounds for both CTL and LTC settings.

2 Problem Setup

In this section, we formally introduce the three problems considered in this paper: mean estimation, online
and offline MABs, under the constraints of both LDP and robustness (including heavy tails and Huber
corruption). To start with, we introduce the privacy and corruption models.

Definition 1 (ε-LDP, [DJW18]). For a privacy parameter ε ∈ [0, 1], the random variable X̃ is an ε-locally
differentially private view of X via privacy channel/mechanism Q if

sup
S∈σ(X̃ ),x,x′∈X

Q(X̃ ∈ S | X = x)

Q(X̃ ∈ S | X = x′)
≤ eε,
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where σ(X̃ ) denotes an appropriate σ-field on X̃ . In this case, we also say that the conditional distribution
(privacy channel) Q is an ε-LDP privacy mechanism. We write Qε as the set of all ε-LDP mechanisms
(channels).

Definition 2 (α-Huber corruption, [Hub64]). Given a parameter α ∈ [0, 1/2) and a distribution D on inliers,
the output distribution under α-Huber model is O = (1 − α)D + αE. That is, a sample from O returns
a sample from D with probability 1 − α and otherwise returns a sample from some (unconstrained and
unknown) corruption distribution E. We write Cα(D) as the set of all possible α-Huber corruptions (channels)
of inlier distribution D.

With the two definitions in hand, we can introduce the two main settings in this paper: (i) LDP-then-Corruption
(LTC) vs. (ii) Corruption-then-LDP (CTL), as also illustrated in Fig. 1.

Definition 3 (LTC vs. CTL). We consider the following interplay between privacy and corruption.
(i) LDP-then-Corruption (LTC): Each user i ∈ [n] first generates an ε-LDP view of raw data Xi. Then, the
private data Yi from each device is independently corrupted by an α-Huber channel that outputs Zi to the
central analyzer/agent.
(ii) Corruption-then-LDP (CTL): Each user’s raw data Xi is first independently corrupted by an α-Huber
model. Then, the corrupted data Yi passes through an ε-LDP mechanism at each device that outputs Zi to the
central analyzer/agent.

Under both settings, we aim to design ε-LDP mechanisms for user devices and central analyzers that ensure
local privacy and robustness against α-Huber corruption and heavy-tailed data distributions. The two settings
also naturally enable us to study the most practical setting C-LDP-C.
Mean estimation. As in Duchi et al. [DJW18], given a real number k > 1, we consider the following class
of possibly heavy-tailed distributions

Pk := {distributions P such that EX∼P [X] ∈ [−1, 1] and EX∼P [|X|k] ≤ 1}. (1)

That is, k controls the tail behavior of the distribution with smaller k meaning heavier of the tails. Given
any distribution P ∈ Pk, our goal is to estimate its mean µ(P ) as accurately as possible. In contrast to the
standard case where the analyzer has access to i.i.d samples {Xi}ni=1 from P , the analyzer in this paper now
only observes samples {Zi}ni=1 that are both private and corrupted view of {Xi}ni=1. Specifically, we are
interested in the high probability error under our two different settings (LTC vs. CTL), as formally defined
below.

Definition 4 (Minimax mean estimation error rate). Given δ > 0 and sample size n > 0, the minimax mean
estimation error rate of the class Pk under ε-LDP and α-Huber corruption is defined as follows

ϕ∗
δ(k, ε, α, n) :=inf{ϕ > 0 | inf

Q∈Qε

inf
µ̂n

sup
P∈Pk

sup
C∈Cα(P )

P [|µ̂n − µ(P )| > ϕ] ≤ δ}, (2)

where µ̂n is a measurable function of {Zi}ni=1, i.e., private and corrupted view of n i.i.d samples {Xi}ni=1

from P ∈ Pk that pass through ε-LDP channel Q and α-Huber corruption channel C. We write ϕ∗
δ,LTC(k, ε, α, n)

and ϕ∗
δ,CTL(k, ε, α, n) for the settings of LTC and CTL.

Intuitively speaking, ϕ∗
δ represents the minimal error rate that any ε-LDP estimator can achieve with high

probability 1− δ for all distributions P ∈ Pk and all α-Huber corruption models, hence taking inf over Q
and µ̂n and sup over distribution and corruption. Thus, the goal in our mean estimation problem is to design
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an optimal ε-LDP mechanism Q⋆ at each user’s side and an optimal analyzer µ̂⋆
n at the central analyzer in

order to attain the minimax mean estimate error rate in (2).
Online MABs. At each round t ∈ [T ], the central learner/analyzer chooses an action/arm at ∈ [K] according
to a policy π and receives a reward sample Xt that is drawn from some distribution Pat with unknown mean
r(at) := µ(Pat). Here, the policy is π = {πt}Tt=1 and πt+1 is a measurable function of the data received by
the end of round t, i.e., for each t ∈ [T ], Dt = {(a,X(a)(t))}a∈[K] where X(a)(t) := {X(a)

1 , . . . , X
(a)
Na(t)

}
and

∑
a∈K Na(t) = t. That is, for each round t, X(a)(t) groups together all Na(t) rewards from each arm

a ∈ [K] where Na(t) is the total number of times that arm a has been pulled by time t. The goal in online
MABs is to characterize the minimax clean regret under our LTC and CTL settings defined below.

Definition 5 (Minimax clean regret). Let MAB(k) := {{Pa}a∈K | Pa ∈ Pk} be the class of K-armed MAB
instances with inlier distributions for each arm in Pk. Then, the minimax clean regret is defined as

R∗(k, ε, α, T ) := inf
Q∈Qε

inf
π

sup
I∈MAB(k)

sup
C∈Cα(I)

E

[
T · r(a⋆)−

T∑
t=1

r(at)

]
, (3)

where at+1 is a measurable function (via π) of private and corrupted dataset {(a, Z(a)(t))}a∈[K]. Here,

for any arm a ∈ [K] and t ∈ [T ], Z(a)(t) := {Z(a)
1 , . . . , Z

(a)
Na(t)

} is the private and corrupted view of
Na(t) samples of Pa that pass through ε-LDP channel Q and α-Huber corruption channel C. We write
R∗

LTC(k, ε, α, T ) and R∗
CTL(k, ε, α, T ) for the settings of LTC and CTL, respectively.

The goal in online MABs is to design an optimal ε-LDP mechanism Q⋆ and optimal learning policy π⋆ so as
to attain the minimax clean regret in (3).

Remark 1. As standard in the literature [WZTW23; CKMY22; NT20], r(·) in (3) is the mean of inlier
distributions while the randomness in the expectation is generated by both privacy and corruption.

Offline MABs. In the offline case, the analyzer cannot interact with users and instead, it is given a batch
pre-collected dataset D = {(ai, Xi)}Ni=1 sampled from some joint distribution of a behavior policy π and
reward distributions {Pa}a∈[K]. As in Rashidinejad et al. [RZMJR21], we assume a finite concentrability
coefficient β⋆ such that 1/π(a⋆) ≤ β⋆, where a⋆ is the optimal arm that has the largest mean and β⋆ captures
deviation between the behavior distribution π and the distribution induced by the optimal policy. The goal
here is to characterize the minimax sub-optimality under our LTC and CTL settings defined below.

Definition 6 (Minimax sub-optimality). Let

MAB(β⋆, k) := {(π, {Pa}a∈K) |Pa ∈ Pk and 1/π(a⋆) ≤ β⋆}

be the class of K-armed MAB instances with distributions in Pk and concentrability coefficient β⋆. Then,
the minimax sub-optimality is defined as

SubOpt∗(β⋆, k, ε, α,N) := inf
Q∈Qε

inf
â

sup
I∈MAB(β⋆,k)

sup
C∈Cα(I)

E [|r(a⋆)− r(â)|] , (4)

where â is a measurable function of private and corrupted dataset {(a, Z(a))}a∈[K] and Z(a) := {Z(a)
1 , . . . , Z

(a)
Na

}
is the private and corrupted view of Na samples of Pa that pass through ε-LDP channel Q and α-Huber
corruption channel C. We write SubOpt∗LTC(β

⋆, k, ε, α,N) and SubOpt∗CTL(β
⋆, k, ε, α,N) for LTC and

CTL, respectively.
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We remark that we assume the batch data is collected by an ε-LDP mechanism that can be specified by the
learner. Note that as in the standard case, we do not control the behavior policy π other than a finite β⋆. The
goal here is to design an optimal ε-LDP mechanism Q⋆ (which protects local privacy for any users offering
batch data) and optimal offline learning algorithm â⋆.

3 Mean Estimation

We start with our first problem – mean estimation under privacy and robustness constraints. Our main result
in this section is the following theorem that characterizes the minimax error rate (cf. Def. 4)

Theorem 1 (Mean Estimation). Given any fixed δ ∈ (0, 1/2)1, ε ∈ [0, 1], α ∈ [0, 1/2) and k > 1, we have
that for all large enough n,

ϕ∗
δ,LTC(k, ε, α, n) = Θ

(α
ε

)1−1/k
+

(
1

ε

√
log(1/δ)

n

)1−1/k
 ,

ϕ∗
δ,CTL(k, ε, α, n) = Θ

α1−1/k +

(
1

ε

√
log(1/δ)

n

)1−1/k
 .

Remark 2. To the best of our knowledge, this is the first high-probability concentration bound for mean
estimation under both LTC and CTL, which tightly captures the dependence on the corruption level α,
privacy budget ε and heavy-tail parameter k, simultaneously. It can be seen that for LTC setting, there is
an additional (1/ε)1−1/k factor, which implies that introducing LDP guarantee first would make it more
vulnerable to corruption/data manipulation attacks. Interestingly, for a fixed ε, this additional vulnerability
due to LDP decreases as the tail becomes heavier, which offers additional insight into the interplay of privacy,
heavy-tailedness, and robustness. Our LTC result also complements the result in Cheu et al. [CSU21], which
considers the bounded case (i.e., k = ∞) under constant probability only rather than our high probability
guarantee. On the other hand, for CTL, we note that the impact of corruption and privacy is separable. Our
high probability bound for CTL complements the error bound in terms of mean-square error (MSE) only
in Li et al. [LBY22].

To establish Theorem 1, we first establish the following lower bounds, with full proof in Appendix E.

Proposition 1 (Lower Bounds). Given any fixed δ ∈ (0, 1/2), ε ∈ [0, 1], α ∈ [0, 1/2), k > 1 and n large
enough, for all ε-LDP mechanism Q and all estimator µ̂n, there exists a distribution P ∈ Pk and α-Huber
corruption channel C ∈ Cα(P ) such that with probability at least δ

(i) For LTC: |µ̂n − µ(P )| ≥ Ω

((
α
ε

)1−1/k
+ (1ε

√
log(1/δ)

n )1−1/k

)
,

(ii) For CTL: |µ̂n − µ(P )| ≥ Ω

(
α1−1/k + (1ε

√
log(1/δ)

n )1−1/k

)
,

where recall that µ̂n is a measurable function of {Zi}ni=1, i.e., private and corrupted view of i.i.d samples
{Xi}ni=1 from P ∈ Pk obtained from ε-LDP channel Q and α-Huber corruption channel C.

Proof sketch. We provide a summary of the key steps in the proof. Essentially, we divide the proof into two
parts. First, we consider the case without corruption and aim to establish the second term in the bound. To

1We assume δ does not depends on n; otherwise, δ ∈ (δmin, 1/2) where δmin = e−cn for some c > 0.
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this end, we will leverage tools from information theory in an novel way, e.g., maximal coupling, strong
data processing inequality of LDP, and Bretagnolle–Huber inequality between TV and KL distance. Then,
we turn to give the first term related to corruption. To this end, we will leverage a folklore but important
fact about Huber model. Roughly speaking, this fact says that given two inlier distributions D1 and D2

that satisfy TV (D1, D2) ≤ O(α), then after α-Huber channel, one cannot distinguish between D1 and
D2. Another important fact is that ε-LDP channel is a “contraction” channel in terms of TV distance,
i.e., TV (M1,M2) ≤ O(ε)TV (P1, P2) where M1, M2 are induced marginals of P1, P2 after any ε-LDP
channel.

Key intuition behind the separation between LTC and CTL. Building upon the above proof, one can
immediately see that under the LTC setting, due to the “contraction” of LDP, one can choose two distributions
that have a larger mean difference by a factor of 1/ε, while still guaranteeing that after α-Huber corruption,
they are indistinguishable, hence explaining the key difference of 1/ε between LTC and CTL. We also provide
another understanding of the separation from the attack perspective (see more details in Appendix A). The
key idea here is that each single data attack in the LTC setting will lead to an additional 1/ε factor compared
to CTL setting. This is mainly because any ε-LDP mechanism on binary data can be simulated by random
response mechanism [KOV15].

Algorithm 1 A Unified Algorithm

1: Procedure: ε-LDP mechanism Q
2: //Input:Ui, parameters:M , ε
3: //Output: private view Ũi

4: Truncate: Ūi = Ui1(|Ui| ≤ M)
5: Random rounding:

U ′
i =

{
M w.p. 1+Ūi/M

2

−M w.p. 1−Ūi/M
2

6: Random response:

Ũi =

{
eε+1
eε−1U

′
i w.p. eε

eε+1

− eε+1
eε−1U

′
i w.p. 1

eε+1

7: Return Ũi

8: Procedure: Analyzer A
9: //Input: {Zi}ni=1, parameters:M , ε

10: //Output: estimator µ̂n

11: Return µ̂n = 1
n

∑n
i=1 Zi1(|Zi| ≤ M · eε+1

eε−1)

We now turn to upper bounds, centering around the following key question: Can we design a simple algorithm
that can achieve optimal errors for all LTC, CTL, and even C-LDP-C in a unified way? We give an affirmative
answer via Algorithm 1. It consists of a local randomizer at each user’s side and an analyzer at the central
side. The task of Q is to guarantee that its output is an ε-LDP view of its input. To this end, for each input
Ui, it first truncates it into Ūi using a properly chosen threshold M . Then, it converts the real number to
binary data via random rounding. Next, it applies random response technique to generate the final output
Ũi, i.e., with probability eε

eε+1 , outputs a number of the same sign (with additional scaling for unbiasedness);
otherwise flips the sign. Upon receiving the final input {Zi}ni=1, the analyzer A first simply filters out the
data if it is out of the bounded range and then returns the sample mean.
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For LTC and CTL, the only difference in Algorithm 1 would be the truncation value M . The performance
bounds for both settings under Algorithm 1 are given below. See Appendix F for proof.

Proposition 2 (Upper Bounds). Given any fixed δ ∈ (0, 1), ε ∈ [0, 1], α ∈ (0, 1/2) and k > 1, for any
distribution P ∈ Pk and any α-Huber channel C ∈ Cα, Algorithm 1 satisfies that the mechanism Q is ε-LDP
and each returned estimate µ̂n guarantees that with probability at least 1− δ

(i) For LTC: |µ̂n − µ(P )| ≤ O

((
α
ε

)1−1/k
+

(
1
ε

√
log(1/δ)

n

)1−1/k
)

,

(ii) For CTL: |µ̂n − µ(P )| ≤ O

(
α1−1/k +

(
1
ε

√
log(1/δ)

n

)1−1/k
)

,

where (i) holds for M=min

{(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and all n ≥ 3 log(1/δ)/α, if α > 0; otherwise

for all n and M =

(
ε
√
n√

log(1/δ)

)1/k

.(ii) holds for M = min

{(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and n ≥

3 log(1/δ)/α, if α > 0; otherwise for n ≥ log(1/δ) and M =

(
ε
√
n√

log(1/δ)

)1/k

.

Corruption-LDP-Corruption (C-LDP-C). Our tight characterization of LTC and CTL immediately helps
us understand the C-LDP-C setting, where corruption happens both before and after LDP. In particular, it
is easy to see that the minimax lower bound for LTC would be a valid lower bound for the more difficult
C-LDP-C setting. It turns out that this lower bound is also tight since it is matched by Algorithm 1 with the
same parameter choice M as in the LTC setting, see Appendix G.
How to choose parameter M in practice. First, we note that for the bounded case (k = ∞), M = 1 across
all three settings, independent of other parameters. This implies that Algorithm 1 can adaptively guarantee
optimal minimax rates for LTC, CTL, and C-LDP-C without prior knowledge of the specific setting and other
parameter like α. Second, for certain applications, one may have prior knowledge of the underlying setting
(see Appendix C.3). In this case, one can have a performance gain if it is under the CTL setting. Also, as
mentioned above, we see that choosing the M as in LTC can automatically help to handle the C-LDP-C
setting. Finally, the dependence on ε in M is fine since it is a known privacy parameter while the dependence
on the unknown parameter α is a little bit annoying. A quick practical fix is to use an estimated upper bound
on α. In theory, the story of whether one can remove it in our case is complicated, see the discussion in
Appendix C.2.

Remark 3 (Burn-in period). Under Algorithm 1, when α > 0, the concentration kicks in when the sample
size n is larger than a threshold. This type of burn-in period also exists in previous concentration results
under the Huber model, though in different contexts (e.g., non-private case in [CKMY22] or central model of
DP in [WZTW23]) or with different estimators (e.g., trimmed mean in [MTCD21]).

Remark 4 (Random response vs. Laplace mechanism). One may wonder if the standard Laplace mechanism
can be applied in replace of the random response for ε-LDP in Q. The answer depends on the setting and the
analyzer A. For CTL, one can still derive a similar optimal concentration bound as in Proposition 2 by the
concentration of Laplace noise. On the other hand, for LTC, simply replacing random response with Laplace
mechanism in Q will lead to an additional log(1/α) factor. This aligns with the fact that truncation-based
estimators even cannot achieve optimal mean estimation for Gaussians under corruption [DK23]. The above
discussion indicates another difference between LTC and CTL, i.e., the choice of ε-LDP mechanisms.
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As two interesting applications of our mean estimation results, we will study both online MABs and offline
MABs in the next two sections, highlighting again the sharp differences between LTC and CTL settings, in
terms of regret and sub-optimality performance, respectively.

4 Online MABs

For online MABs, our main result is the following theorem that gives an almost tight characterization (up to
log factor) of its minimax clean regret (cf. Def. 5) for both LTC and CTL settings.

Theorem 2 (Online MABs). Given any ε ∈ [0, 1], α ∈ [0, 1/2) and k > 1, we have for all large enough T ,

R∗
δ,LTC(k, ε, α, T ) = Θ̃

(
T ·
(α
ε

)1−1/k
+ T

k+1
2k

(
K

ε2

) k−1
2k

)
,

R∗
δ,CTL(k, ε, α, T ) = Θ̃

(
T · α1−1/k + T

k+1
2k

(
K

ε2

) k−1
2k

)
.

Remark 5. For both settings, due to corruption, the minimax clean regret (i.e., problem-independent regret)
has a linear dependence on T , as in previous works under Huber corruption [WZTW23; CKMY22]. The key
here is to capture the tight factor in front of T , where the additional 1/ε factor in LTC again demonstrates the
sharp difference between the two settings as in the mean estimation problem. As before, one can obtain the
same rate for C-LDP-C from the LTC setting.

To prove the above theorem, we start with the corresponding lower bounds (see App. H for proof).

Proposition 3 (Regret Lower bounds). Let ε ∈ [0, 1], α ∈ [0, 1/2), k > 1 and T be large enough. Then, the
minimax clean regrets satisfy the following results.

(i) LTC: R∗
LTC(k, ε, α, T ) ≥ Ω

(
T ·
(
α
ε

)1−1/k
+ T

k+1
2k

(
K
ε2

) k−1
2k

)
;

(ii) CTL: R∗
CTL(k, ε, α, T ) ≥ Ω

(
T · α1−1/k + T

k+1
2k

(
K
ε2

) k−1
2k

)
.

Comparisons to related work. We first remark that Tao et al. [TWZW22] studied a similar case but without
corruption (i.e., α = 0) and established a lower bound on the order of Ω

((
K
ε2

)1−1/k
T 1/k

)
(for k ∈ (1, 2]

when adapted to our setting), which is weaker concerning T compared to our lower bound. In Tao et al.
[TWZW22], the authors also claimed to achieve their lower bound via some arm-elimination algorithm,
which now becomes ungrounded given our tighter lower bound. That is, since for a large enough T , our lower
bound is even larger than their upper bound for fixed ε, k and K (e.g., T 3/4 vs.

√
T for k = 2, see further

discussion in Appendix C.3). Another recent work [WZTW23] also studies online MABs with both privacy
and Huber corruption but under the weaker central model of DP. In particular, the true reward from each user
may be first corrupted before being observed by the central learner, who is then responsible for taking care of
privacy guarantees. That is, the central learner has access to users’ raw (corrupted) data rather than only a
private view of data as in our LDP case. Under this strictly weaker privacy model, Wu et al. [WZTW23]
establish the following lower bound on the minimax clean regret: Ω

(√
KT + (K/ε)1−

1
k T

1
k + Tα1− 1

k

)
.

Compared to our CTL setting, one can see that our stronger LDP privacy incurs a larger privacy cost.
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Algorithm 2 Online MABs under LTC and CTL
1: Input: private and robust mean estimator

µ̂n(k, ε, α, δ) in Algorithm 1, constant c
2: Initialize: For each a ∈ [K], µ̂a,s(t) is the esti-

mate µ̂s(k, ε, α, t
−4) based on the first s observed

values of Za,1, . . . , Za,s of the rewards for arm a;
3: for t ∈ [T ] do
4: if ∃a ∈ [K], Na(t) ≤ 6 log(t)/α then
5: at = a
6: else
7: Let γa(t) :=

(
1
ε

√
log(t4)
Na(t)

)1−1/k

8:

βa(t)=

{
c
(
α
ε

)1−1/k
+ cγa(t) LTC

cα1−1/k + cγa(t) CTL

9: Let UCBa(t) = µ̂a,Na(t)(t) + βa(t)
10: at = argmaxa∈[K] UCBa(t)
11: end if
12: end for

Now, let us turn to our proposed algorithm (i.e.,
Algorithm 2) for achieving matching regret upper
bounds (up to log factor). Algorithm 2 is a variant
of upper confidence bound (UCB)-based algorithm
(cf. [ACF02]), which computes the UCB index for
each arm at each round t ∈ [T ] and then selects the
one with the highest UCB, i.e., optimism in the face
of uncertainty. To construct a valid UCB, we resort
to our mean estimation results in the last section. In
particular, we will need Algorithm 1 to compute the
private and robust sample mean µ̂a,Na(t)(t) for each
arm a ∈ [K] at each round t, where Na(t) be the
number of pulls of arm i by the beginning of time
t. Then, the bonus term (i.e., radius of the confi-
dence bound) βa(t) comes from the high probability
mean estimation error established in Proposition 2.
Note that due to burn-in period of the concentration
results, Algorithm 2 has an additional exploration
period to guarantee that the number of arm pulls
is larger than a threshold (line 4). The following
proposition formally states the regret guarantees of
Algorithm 2 with the proof given in Appendix I.

Proposition 4 (Regret Upper Bounds). Let ε ∈ [0, 1], α ∈ (0, 1/2), k > 1 and T be large enough. Then, for
any 1/2 > ᾱ ≥ α, the expected clean regret of Algorithm 2 satisfies the following guarantees.

(i) LTC: RLTC(k, ε, α, T ) ≤ O

(
T
(
ᾱ
ε

)1−1/k
+
(
K log T

ε2

) k−1
2k

T
k+1
2k + K log T

ᾱ

)
;

(ii) CTL: RCTL(k, ε, α, T ) ≤ O

(
T ᾱ1−1/k +

(
K log T

ε2

) k−1
2k

T
k+1
2k + K log T

ᾱ

)
.

Comparisons to related work. First, for α = 0, our result with a direct modification of the burn-in period

gives a regret bound that only has the term O

((
K log T

ε2

) k−1
2k

T
k+1
2k

)
. This is the first correct regret bound

for locally private heavy-tailed MABs, i.e., without corruption, fixing the aforementioned issue in the state-
of-the-art in [TWZW22] (see more discussions in Appendix C.3). Second, it is worth comparing our result to
a recent similar result in Charisopoulos et al. [CEM23], where the authors present regret for linear bandits
under LTC setting. Their result is worse than ours when reduced to MAB with bounded rewards, as the
scaling with respect to α is

√
α in the first linear term rather than our α. Another minor difference is that our

algorithm is anytime while their algorithm is not.
Other extensions. Although we mainly focus on minimax regret (i.e., problem-independent bound) in this
paper, under some conditions of corruption level and the minimum mean gap, Algorithm 2 is also able to
offer some problem-dependent bounds (see Appendix I). In the case that the corruption parameter α is very
small but not equal to zero, one can tune the choice of ᾱ (hence truncation threshold M ) to balance the first
and third terms in the bound. Similar comments and observations have been made in related work as in Chen
et al. [CKMY22] and Wu et al. [WZTW23].
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5 Offline MABs

In this section, we study offline MABs as another application of our high probability mean estimation results
developed in Section 3. We establish both lower bounds and almost matching upper bounds for locally private
offline MABs with corruptions. To the best of our knowledge, this is the first result on offline MABs with
heavy-tailed rewards, even without privacy and corruption.

Proposition 5 (Sub-optimality Lower Bounds). Let ε ∈ [0, 1], α ∈ [0, 1/2), k > 1 and N be large enough.
Then, for β⋆ ≥ 2, the minimax expected sub-optimality satisfies the following results.

(i) LTC: SubOpt∗LTC(β
⋆, k, ε, α,N)≥Ω

((
α
ε

)1−1/k
+(1ε

√
β⋆

N

)1−1/k

);

(ii) CTL: SubOpt∗CTL(β
⋆, k, ε, α,N) ≥ Ω

(
α1−1/k + (1ε

√
β⋆

N

)1−1/k

);

Algorithm 3 Offline MABs under LTC and CTL

1: Input: Offline data D = {(a, Z(a))}a∈[K], mean
estimator µ̂n(k, ε, α, δ) in Algorithm 1, positive
constant c

2: Initialize: Na = |Z(a)| for all a ∈ [K], i.e., num-
ber of pulls for arm a in D

3: for a ∈ [K] do
4: if Na < 3 log(1/δ)/α then
5: Set the empirical mean reward r̂(a) = 0
6: Set the penalty b(a) = 1
7: else
8: r̂(a) = µ̂Na(k, ε, α, δ)

9: Define γ =

(
1
ε

√
log(2K/δ)

Na

)1−1/k

10: b(a) =

{
c
(
α
ε

)1−1/k
+ cγ for LTC

cα1−1/k + cγ for CTL
11: end if
12: end for
13: Return â = argmaxa∈[K] r̂(a)− b(a)

Now, let us turn to our proposed algorithm, which is
able to achieve a matching expected sub-optimality
(up to log factor) for both LTC and CTL settings.
Our algorithm is a simple variant of the classic
Lower Confidence Bound (LCB)-based algorithm
as in Rashidinejad et al. [RZMJR21], i.e., pes-
simism in the offline setting. The key difference
compared to Rashidinejad et al. [RZMJR21] is our
new private and robust estimator (line 8) and penalty
term (line 10), which come from our high proba-
bility mean estimation error. Another modification
is due to our burn-in period of concentration result
(line 4). Putting all of these together, Algorithm 3
is able to achieve the following guarantees on the
expected sub-optimality, which almost matches the
lower bound in Proposition 5. See the App. K and J
for proofs of the upper and lower bounds.

Proposition 6 (Sub-optimality Upper Bounds). Let
ε ∈ [0, 1], α ∈ (0, 1/2), k > 1 and δ = 1/N .
Then, for all finite β⋆ ≥ 1 and large enough N , the
expected sub-optimality of Algorithm 3 satisfies

(i) LTC:SubOptLTC(β
⋆, k, ε, α,N)≤O

((
α
ε

)1−1/k
+

(
1
ε

√
β⋆ log(KN)

N

)1−1/k
)

;

(ii) CTL: SubOptCTL(β
⋆, k, ε, α,N) ≤ O

(
α1−1/k +

(
1
ε

√
β⋆ log(KN)

N

)1−1/k
)

.

For the case of α = 0, as before one can simply choose to use the mean estimate result for α = 0 as shown in
Proposition 2 and adjust the burn-in period accordingly. This will lead to a bound that only has the second
term in the above upper bounds. For β⋆ ≥ 2, one can observe that the upper bound of Algorithm 3 almost
matches the lower bounds in Proposition 5 for both LTC and CTL settings. However, when β⋆ ∈ [1, 2)
(i.e., good coverage case), it is known that the performance of LCB is worse than imitation learning, i.e.,
simply returning the most frequently selected arm in the offline dataset (when there is no privacy and
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corruption) [RZMJR21]. We leave it to future work to give a tight characterization of the sub-optimality when
β⋆ ∈ [1, 2). Moreover, the proof of Proposition 6 also naturally gives us high-probability bounds without
specifying δ = 1/N in the end.

6 Simulations and Conclusion
Beyond our theoretical results, we have also conducted a set of simulations for our three problems. Our
theoretical results capture the worst-case performance (i.e., minimax rates). Thus, for simulations, we are
particularly interested in the following two questions: (i) Can we simulate the worst-case scenario and test
the performance of our proposed algorithms? and (ii) How about their performance in non-worst-case
scenarios? We give detailed answers to both questions for all three problems in Appendix A, which offers
additional insights into the interplay between privacy and robustness.
To conclude, we have demonstrated an interesting interplay between privacy and robustness in three problems:
mean estimation, online and offline MABs. The punchline across three problems is that corruption after any
LDP mechanism becomes easier, i.e., the same amount of corruption leads to a worse performance when
compared to the case where Huber corruption happens before LDP mechanisms. We also give the first set of
results for the most practical C-LDP-C setting.
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A Simulations

In this section, we conduct numerical simulations to assess the performance of our algorithms in three
problems (i.e., mean estimation, online MABs and offline MABs), under both LTC and CTL settings.
Recall that our performance metrics for all three problems are minimax ones, which capture the worst-case
performance. As a result, we are particularly interested in the following two questions in our simulations:

(i) Can we simulate the worst-case scenario and test the performance of our proposed algorithms?

(ii) How about their performance in non-worst-case scenarios?

Note that (i) essentially sheds further light on how to design the most powerful adversary Huber corruption
model, which in turn could explain the separation result between LTC and CTL from the perspective of
attacking. On the other hand, (ii) would help to illustrate our algorithms’ performance in some mild/real-world
non-adversary Huber corruption. For example, although the minimax regret for online MABs has a linear
term in the worst case, the actual performance under the non-adversary corruption model can be sub-linear as
we will show later.

A.1 Mean estimation

We start with the worst-case scenario for the mean estimation under a large sample size regime where the
minimax error rate is dominated by the corruption part, i.e., the separation result (α/ε)1−1/k under LTC vs.
α1−1/k under CTL. To this end, we need to design the most powerful adversary corruption for both LTC
and CTL. Here, we allow the (white-box) adversary to choose inlier distribution over X and can adaptively
choose Huber corruption distribution based on inlier distribution and the knowledge of our algorithm, e.g.,
LDP mechanism Q in the LTC setting.
In particular, the adversary chooses the following inlier distribution:

P (X = 1/γ) =
1

2
γk, P (X = −1/γ) =

1

2
γk, P (X = 0) = 1− γk (5)

where γ = (α/ε)1/k under LTC and γ = (α)1/k under CTL. One can clearly see that E
[
|X|k

]
≤ 1 for all

k > 1, hence P ∈ Pk for any k > 1 and α ≤ ε. Moreover, we have E [X] = 0.
Now, we first consider the following strong Huber corruption model.

Definition 7 (Strong Huber corruption for mean estimation). Let the inlier distribution over X be given
by (5). Under LTC: for each input Yi, with probability α, replace it with M · eε+1

eε−1 ; Under CTL: for each
input Xi, with probability α, replace it with M ;

Note that, the white-box adversary knows our algorithm and hence M . We are going to show that no matter
how large the sample size is, the mean error has to be large for both LTC and CTL under the above strong
Huber corruption.
Let us start with CTL and consider the sample size n to be large. Then, according to Algorithm 1, M =
(1/α)1/k = 1/γ, which leads to the fact that the mean of Y is now αM = α1−1/k (note E [X] = 0). Then,
our estimator will essentially at best return the mean of Y , hence leading to the error of Ω(α1−1/k). For LTC,
with the choice of γ and M , we also have M = 1/γ. By our design of LDP mechanism Q in Algorithm 1, the
mean of Y is still zero and hence after the corruption, the mean of Z becomes α ·M eε+1

eε−1 , which is the best
outcome of our estimator, hence the error of Ω((α/ε)1−1/k). Note that in both cases, the choice of corruption
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distribution needs care (i.e., adaptation to our algorithm), since otherwise, our estimator may still have an
accurate estimate, as some other outlier values can be simply filtered out by our algorithm. More importantly,
an alternative explanation of our separation result becomes evident: under LTC, the error is larger because
the adversary has the capability to select a corruption value that is magnified by a factor of 1/ε.
In our experiments, we choose k = 2 and consider various corruption level α ∈ {0, 0.02, 0.05} and
privacy budget ε ∈ {0.3, 0.5, 1}. For each set of parameters, we conduct 300 runs and plot the average of
the estimation error and corresponding confidence region. Fig. 2 illustrates our simulation results under
strong Huber corruption in Definition 7. A common pattern behind all the plots in Fig. 2 is that due to
strong corruption, the estimation error will only converge to a plateau and almost match the lower bounds.
Specifically, from the two plots in column (a), we see that when α = 0 or ε = 1, the performance under LTC
and CTL is close (i.e., no-separation), which aligns with our theoretical results. In the two plots of column
(b), we see that LTC has a larger error than CTL and as ε decreases (i.e., stronger privacy), the difference
becomes larger, which matches our theoretical separation results. Finally, comparing the plots in column (c)
with those in (b), we see that as the corruption level increases, the performance becomes worse.
We also consider the following weak corruption model, which simply flips the sign of the data.

Definition 8 (Weak Huber corruption for mean estimation). Let the inlier distribution over X be given by (5).
Under LTC: for each input Yi, with probability α, replace it with −Yi; Under CTL: for each input Xi, with
probability α, replace it with −Xi;

Figure 2: Mean estimation error with strong Huber corruption in Definition 7 under LTC and CTL settings.
In Fig.3, we can see that under weak Huber corruption, the estimation error under our estimators can indeed
decrease as the sample size increases. This demonstrates that in some real-world mild corruption scenarios,
our estimators can yield promising performance.
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Figure 3: Mean estimation error with weak Huber corruption in Definition 8 under LTC and CTL settings
A.2 Online MABs

A.2.1 Non-adversary Corruption

In this section, we first consider some classic heavy-tailed distributions under non-adversary corruption. The
main purpose is to show that our proposed algorithm (i.e., Algorithm 2) can indeed achieve sublinear regret
under certain scenarios. Moreover, our simulations will also provide some insights into our proof.
Settings. As in previous works [TWZW22; WZTW23], we consider Pareto distribution, whose probability
distribution is given by

f(x;xm, s) =

{
sxs

m
xs+1 , if x ≥ xm

0, otherwise

where s > 0 is the shape parameter and xm > 0 is the scale parameter. In our experiments, we consider there
are K = 10 arms, and for each arm i ∈ [K], the distribution is Pareto with xm = i and s = 11. To ensure
that each arm’s reward distribution is in Pk (i.e., EX∼P [|X|k] ≤ 1), we normalize the reward by the k-th
moment, which is sxk

m
s−k . Consequently, the mean of each arm is s−k

xk−1
m (s−1)

. We consider k = 2, which along
with our choices of s and xm, yields that arm 1 is the best arm with a mean of 0.9 while arm 10 is the worst
arm with a mean of 0.09. For the corruption, we consider the following Huber model.

Definition 9 (Huber corruption for online/offline MABs). Let each arm’s inlier distribution be Pareto with the
parameters described above. Under LTC, for each private view of reward from each a ∈ [K], with probability
α, replace it with M · eε+1

eε−1 . Under CTL, for each raw reward from each arm a ∈ [K], with probability α,
replace it with M .

Remark 6. It is worth noting that even though the above corruption values are the same as in Definition 7,
it is not necessarily the worst-case as the inliers are now Pareto. That is, even after corruption, the agent
can possibly still distinguish between different arms. We also consider strong corruption cases where after
corruption, the agent cannot distinguish the distributions of two arms, hence a linear regret, see Fig. 6 for
details.

Fig. 4 illustrates the regret performance of our proposed algorithm (i.e., Algorithm 2) for online MABs under
LTC and CTL settings, with the specific corruption given by Definition 9. The two plots in column (a) capture
the LTC setting while the two plots in column (b) denote the CTL setting. In both settings, we can see that
for small corruption level α, our algorithm can achieve sublinear regret, even though in the worst-case our
minimax bounds are linear. In column (c), we also directly compare the regret performance under LTC and
CTL with different sets of parameters of α and ε. As expected, the regret performance under LTC is worse
than that under CTL, and as α increases or ε decreases, the gap becomes larger. This demonstrates separation
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Figure 4: Regret performance with weak Huber corruption in Definition 9 under LTC and CTL settings.
results in terms of actual performance rather than only in terms of theoretical upper bounds. As a baseline,
we also compare with one classic robust MAB algorithm under heavy-tailed rewards proposed in [BCL13].
Fig. 5 compares our specific algorithms with the algorithm proposed in [TWZW22], namely LDPRSE,
which is proposed for the setting of LDP and heavy-tailed rewards in online MABs. Hence, our comparisons
were made in the online MAB setting under weak corruption. The findings are organized into two columns,
demonstrating the impact of varying α (corruption) values on performance as ε (privacy) increases. These
results highlight the advantages of our algorithms over LDPRSE in situations where there exist additional
corruptions.
Note that our purpose in this section is not to demonstrate the superior performance of our proposed algorithm
over all existing robust or/and private algorithms (given a large number of different existing ones). Rather,
one of the goals is to use simulations to highlight the separation between LTC and CTL. Another important
goal is to provide more insights into our proof of the regret upper bounds. Specifically, in our proof of the
LTC setting (similar in CTL setting), we will divide the set of all sub-optimal arms G into two groups G1

and G2 where G2 = {a ∈ [K] \ a∗ : c
(
α
ε

)1−1/k ≥ 1
2∆a} for some constant c. Then, we argue that if G2 is

empty, then one can still derive the standard logarithmic problem-dependent regret bound. This can also be
somehow validated partially by our simulation results. In particular, under our problem instances described
above, when α = 0.02, ε = 0.1, and c = 0.5, we have |G2| = 0 under LTC (i.e., no sub-optimal arms in G2).
In this case, as illustrated in the top plot of column (a) in Fig. 4, we can observe logarithmic order regret.
This naturally extends to the larger ε case, as illustrated in the bottom plot in column (a).

A.2.2 Strong Huber Corruption

As mentioned above, we also create a strong Huber corruption for online MABs, in this case, the regret
becomes linear which matches our minimax lower bound. In this scenario, our goal is to create an adversary
strong Huber corruption for online MABs, where the agent cannot distinguish the distributions of two arms
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Figure 5: Comparison of Our Algorithms vs. LDPRSE in the online MAB setting under weak corruption.
by utilizing the following probability distribution:

P (X = 1/γ) = γk, P (X = 0) = 1− γk

P ′(X = 1/γ) = γk/2, P ′(X = 0) = 1− γk/2

where γ adopts the form c1 · (α/ε)1/k under LTC and c1 · (α)1/k under CTL, with c1 configured as 0.1 to
ensure γk ≤ 1 for an expansive α. As before, P, P ′ ∈ Pk for any k > 1 and µ(P ) = γk−1, µ(P ) = γk−1/2.
Let P and P ′ represent the distributions for arms 0 and 1 respectively. We define the corruption distribution
under CTL settings as:

Definition 10 (Strong Huber corruption under CTL Settings).

C(X = 1/γ) = γk/2, C(X = 0) = 1− γk/2

C ′(X = 1/γ) = γk/(2α), C ′(X = 0) = 1− γk/(2α)

According to 2, it is apparent that the agent cannot differentiate between P and P ′ upon executing the
operation:

(1− α)P + αC = (1− α)P ′ + αC ′

This outcome emerges from the CTL’s inherent nature of initially introducing contamination, which perseveres
in maintaining indistinguishability, even post-transmission through the LDP channel and the Huber model.
In the context of LTC settings, the distinctiveness arises from the fact that the distributions of P and P ′

undergo alterations after passing through LDP, necessitating corresponding corruptions. Let R and R′ be the
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post-LDP transformation distributions over variable Y, defined as:

R(Y = S) =
1

2
+

γk

2
· e

ε − 1

eε + 1
, R(Y = −S) =

1

2
− γk

2
· e

ε − 1

eε + 1

R′(Y = S) =
1

2
+

γk

4
· e

ε − 1

eε + 1
, R′(Y = −S) =

1

2
− γk

4
· e

ε − 1

eε + 1

where S = M · eε+1
eε−1 .

Additionally, we define the corruption distribution as:

Definition 11 (Strong Huber corruption under LTC Settings).

N(Y = S) =
γk

4
· e

ε − 1

eε + 1
, N(Y = −S) = 1− γk

4
· e

ε − 1

eε + 1

N ′(Y = S) =
γk

4
· e

ε − 1

eε + 1
· 1
α
, N ′(Y = −S) = 1− γk

4
· e

ε − 1

eε + 1
· 1
α

Now we also have (1− α)R + αN = (1− α)R′ + αN ′, indicating our continued inability to distinguish
between P and P ′ in the LTC setting.
Fig. 6 illustrates the regret performance of our proposed algorithm (i.e., Algorithm 2) for online MABs under
LTC and CTL settings, with the strong Huber corruption in Definition 10 and Definition 11. A common
pattern behind all the plots in Fig. 6 is that due to strong huber corruption, the agent cannot distinguish the
distributions of two arms, hence linear regret. Based on the analysis above, we anticipate that the regret will
scale linearly by a factor of c1 with respect to our minimax clean regret and Fig. 6 aligned with our discussion.
The two plots in column (a) capture the LTC setting while the two plots in column (b) denote the CTL setting.
As expected, the regret performance under LTC is worse than that under CTL, highlighting separation results
in terms of actual performance rather than only in terms of theoretical upper bounds.

A.3 Offline MABs

In the offline case, the analyzer/agent is given a batch of pre-collected data with private and corrupted view.
In our experiments, we again consider the case that there are K = 10 arms and each arm’s raw reward
distribution is Pareto with the same parameters as in the online case. For corruption, we again consider the
one given by Definition 9.
One difference here is that we need to specify the behavior policy π that is used to collect the data. To this
end, we consider the following policy π in our simulation results: for each sample size N , we pulled the
best arm (i.e., arm 1) N

3 times and each other arm i ̸= 1 uinformly, i.e., 2N
3(K−1) times. That is, roughly

speaking, we approximately have 1/π(a⋆) = 3, which aligns with our theoretical assumption (i.e., the finite
concentrability coefficient β⋆ ≥ 2 when our upper bounds are tight in minimax sense).
Fig. 7 illustrates the suboptimality of our algorithm (i.e., Algorithm 3) under both LTC and CTL settings.
We can see that in both settings, the sub-optimality could approach zero under several values of privacy
parameters. This again highlights that under mild/non-adversary corruption, the algorithm could yield
reasonably good performance, rather than the pessimistic worst-case one. Also, we observe that even in this
non-adversary corruption case, suboptimality under LTC in general is still worse than that under CTL. Finally,
it is not surprising that for both LTC and CTL, as α increases or ε decreases, sub-optimality will increase.
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Figure 6: Regret performance with strong Huber corruption in Definition 10 unde CTL settings and Defini-
tion 11 under LTC settings.
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Figure 7: Suboptimality performance with Huber corruption in Definition 9 under LTC and CTL settings.
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B Additional Related Work

Private MABs. To offer mathematically rigorous privacy protection, LDP is first introduced to MABs
in [RZLS20] where the authors establish private lower bounds on both problem-dependent and problem-
independent (minimax) regrets as well as several LDP mechanisms and learning algorithms that achieve
nearly-optimal performance. Later, it is generalized to the heavy-tailed setting in [TWZW22]. LDP has
also been considered in various other bandit settings [CZZYCW20; ZCHLW20; ZT21]. In addition to LDP,
other strictly weaker privacy models have also been considered in MABs to achieve a better regret, such as
central DP where users need to trust the central learner [MT15; TD16; SS19] and distributed DP where users
need to trust the intermediate third-party [TKMS21; CZ22]. In addition to the above online MABs, recent
work [QW22] also considers offline RL (hence MABs) under central DP with bounded rewards.
Robust MABs. Robust MABs under Huber corruption have been recently studied in [KPK19; MTCD21;
BMM22; AMBM24]. Several other corruption models have also been considered in MABs, such as budgeted-
corruption model where the cumulative difference between observed reward and true reward is bounded by
some constant budget [LMP18; GKT19] and strong contamination model [NT20; ABM19]. Robust regret
minimization in MABs under heavy-tailed rewards have also been studied, e.g., [BCL13; AJK21].
Private and Robust MABs. As mentioned above, the existing literature largely investigate privacy and
robustness in MABs separately. To the best of our knowledge, there are only two very recent works that
consider privacy and robustness in MABs simultaneously. In [WZTW23], the authors consider the central DP
model where the raw non-private feedback received by the central learner can be first corrupted under Huber
model. This is in sharp contrast to our local DP model, which is not only stronger but allows us to study the
order of corruption and privacy. In [CEM23], the authors study linear bandits (which includes MAB as a
special case) under LDP and then Huber corruption (i.e., LTC setting). As discussed in Section 4, their regret
bound is sub-optimal and worse than ours when reduced to the MAB case. Note that we also study the CTL
setting, which in turn highlights the interplay between privacy and corruption. Moreover, the results for both
LTC and CTL allow us to give the first results for the C-LDP-C setting.
Private and Robust Mean Estimation. Our work is inspired by recent advances in (locally) private and robust
mean estimation. In particular, for the CTL setting, the authors of [LBY22] give the tight characterization
in terms of mean-square-error (MSE). In contrast, we derive the high probability concentration. For LTC,
both [CSU21; CS23] give constant-probability concentration when the inlier distribution is bounded. Instead,
we present the high-probability version even for heavy-tailed inlier distribution, which requires new analysis
and design of the estimators. We would also like to point out some other related private and/or robust mean
estimation results. For instance, under central DP, [KSU20] gives the first high probability mean concentration
for heavy-tailed distributions. For standard non-private mean estimation under heavy tails, we refer readers to
the nice survey by [LM19]. For non-private mean estimation under corruption in general high-dimension
space, we refer readers to the nice book by [DK23]. We finally remark that there are recent exciting advances
in understanding the connection between robustness and privacy in mean estimation (e.g., robustness induces
privacy [HKMN23; AUZ23] and vice versa [GH22]), which, however, mainly focus on the central DP model.

C Discussions

C.1 Discussions on Practical Scenarios for LTC and CTL

In the introduction, we have motivated our paper using the example of online recommendation/advertising
via MABs. Here we give two more concrete examples. The key difference between LTC and CTL in practice
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is that LTC mainly models the situation where the data transmission is vulnerable to manipulation while CTL
models the situation where the data source is more vulnerable to manipulation.
CTL: Consider a healthcare recommendation system that suggests personalized health interventions based
on patient data. In this case, the data might first be corrupted (intentionally or unintentionally) before being
subjected to LDP mechanisms, such as when data is collected from various sources with different levels of
reliability or when users self-report their health information with errors or falsifications. However, the data
transmission is often well-controlled in this case and is not likely vulnerable to manipulation due to strong
federal regulations.
LTC: Consider a wireless IoT (Internet-of-Things) smart-home application where sensors are deployed to
monitor/control the temperature or other metrics in homes. These sensors often have built-in checks to ensure
that the data is collected correctly. However, after the LDP mechanism at each sensor from each home, the
data transmission process through wireless networks (channels) is often more vulnerable to manipulation
attacks, e.g., man-in-the-middle attacks, packet sniffing, or spoofing.
In addition to the above two examples, we do believe that there are many other practical scenarios that
motivate our study of the interplay between LDP and Huber corruption.
Key implication of “LTC is harder": If our recommendation system requires LDP protection, then the
adversary can tailor its manipulation attack (corruption) based on the LDP mechanism (hence ε) to amplify
the error by the order of 1/ε. In other words, LDP protocols are highly vulnerable to manipulation – poisoning
the private messages can be far more destructive than poisoning the data itself. As a result, it is important to
keep our private protocol “secret" as the adversary needs to tailor its attack according to the LDP protocol to
create the worst-case scenario (strongest attack).

C.2 Robust Estimators without Knowing Corruption Parameter

Currently, whether it is possible to derive a tight error bound without knowing α is still unclear to us. In
particular, on the one hand, there are some positive results [JOR22; BFLS22] for some estimators. On the
other hand, some work suggests some negative results regarding MAB problems [AMBM24]. Note that
all [JOR22; BFLS22; AMBM24] only consider corruption, i.e., no privacy protection. Thus, one interesting
future work is to settle down this problem, which is beyond the scope of our current paper.

C.3 Ungrounded Regret Upper Bound in State-of-the-Art

In [TWZW22], the authors consider a simpler setting – locally private heavy-tailed online MABs, i.e., without
corruption. They claimed to achieve a regret upper bound on the order of O

((
K
ε2

)1−1/k
T 1/k

)
. However,

given our tighter lower bound Ω

(
T

k+1
2k

(
K
ε2

) k−1
2k

)
in Proposition 3, their upper bound becomes ungrounded

as it contradicts our lower bound for large T . In particular, considering k = 2 (with only a bounded second
moment), our lower bound gives a regret on the order of Ω(T 3/4) while their upper bound is O(

√
T ).

Remark 7. In fact, our lower bound also gives another interesting interplay between privacy and robustness
(in particular, heavy-tailed rewards). Specifically, in the non-private case, as shown in the [BCL13], one can
still achieve Θ(

√
T ) regret when the reward distributions have only bounded second moments. However, in

the locally private case, our lower bound indicates that the regret is at least Ω(T 3/4).
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D Broader Impact Statement

This research presents novel insights into the interplay between local differential privacy and robustness
in the context of Multi-Armed Bandits (MABs), with a focus on two distinct settings: Local Differential
Privacy then Corruption (LTC) and Corruption then Local Differential Privacy (CTL). The findings have
broad implications in various domains, particularly in online advertising and recommendation systems, where
privacy preservation and data integrity are paramount. By enhancing the robustness of MAB algorithms
against corruption and heavy-tailed feedback while ensuring local privacy, our work can significantly
contribute to the development of more secure and reliable decision-making systems. We show that the mean
estimation error under LTC is larger than under CTL, emphasizing that LTC is a more challenging setting.
This separation is critical for practical applications like healthcare recommendation systems (CTL) and
wireless IoT smart-home applications (LTC). Additionally, our algorithms can adaptively guarantee optimal
minimax rates across different settings without prior knowledge, which is crucial for real-world scenarios
where the specific setting may not be known in advance. However, the complexity and computational
demands of these advanced algorithms might limit their accessibility to smaller organizations, potentially
widening the gap between large and small entities. Moreover, while our approach reduces privacy leakage
and data manipulation risks, it does not completely eliminate them. This is particularly important because
adversaries can tailor their attacks based on the LDP mechanism to amplify errors. Thus, ongoing efforts
should focus on further improving these algorithms to address potential ethical issues, including data bias and
privacy concerns, and enhancing their accessibility and fairness. Furthermore, deriving tight error bounds
without knowing the corruption parameter α remains an open challenge, suggesting the need for future
research in this area.

E Proof of Proposition 1

Proof. We first focus on the LTC setting and divide the proof into two steps.
Step 1: Without corruption. By definition, it suffices to establish a lower bound on the concentration even
without corruption. That is, under LTC, Zi = Yi for all i ∈ [n]. This will give us the second term in the
bound.
Consider the following two distributions P and P ′. Let γ > 0, specified later and

P (X = 1/γ) = γk, P (X = 0) = 1− γk

P ′(X = 1/γ) = 1/2 · γk, P ′(X = 0) = 1− 1/2 · γk. (6)

It is easy to see that for both P, P ′, E
[
|X|k

]
≤ 1 for all k > 1, hence P, P ′ ∈ Pk for any k > 1. Moreover,

we have |µ(P )−µ(P ′)| = 1/2 · γk−1 and TV (P, P ′) = 1/2 · γk. For any ε-LDP channel Q, let M and M ′

be the induced marginal distribution from P and P ′, respectively. That is, for i ∈ [n], Yi ∼ M and Y ′
i ∼ M ′.

Let Y[n] = {Yi}ni=1 and Y ′
[n] = {Y ′

i }ni=1, i.e., Y[n] ∼ M⊗n and Y ′
[n] ∼ M ′⊗n.

The high-level idea behind our proof is as follows: Given any sample size n, if there exists at least probability
2δ such that Y[n] = Y ′

[n], then one has to incur Ω(γk−1) estimation error with probability δ. This naturally
reminds us to think about maximal coupling, since it maximizes the probability that Y[n] = Y ′

[n] and is also
closely related to TV distance. In particular, we have the following textbook facts.

Lemma 1. Let P1 and P2 be two distributions on X that share the same σ-algebra. There exists a coupling
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ω∗(P1, P2), which is a distribution over X 2 such that

P(X1,X2)∼ω∗(P1,P2))(X1 ̸= X2) = TV(P1, P2)

∀S measurable,P(X1,X2)∼ω∗(P1,P2))(X1 ∈ S) = P1(X1 ∈ S)

∀S measurable,P(X1,X2)∼ω∗(P1,P2))(X2 ∈ S) = P2(X2 ∈ S).

This coupling is called maximal coupling.

Based on this fact, fix some n, if (Y[n], Y ′
[n]) is sampled from the maximal coupling ω∗(M⊗n,M ′⊗n), then

we know that there exists a probability p = 1− TV(M⊗n,M ′⊗n) such that Y[n] = Y ′
[n]. To lower bound p,

we need to upper bound the TV distance. To this end, we will leverage Bretagnolle–Huber inequality and
strong data processing inequality (i.e., Corollary 3 in [DJW18]). In particular, we have

TV(M⊗n,M ′⊗n)
(a)

≤ 1− 1

2
exp

(
−KL

(
M⊗n

∥∥M ′⊗n
))

(b)
= 1− 1

2
exp

(
−4(eε − 1)2 · n · (TV

(
P, P ′))2)

= 1− 1

2
exp

(
−4(eε − 1)2 · n · γ2k

)
(c)

≤ 1− 1

2
exp

(
−16ε2 · n · γ2k

)
,

where (a) holds by Bretagnolle–Huber inequality; (b) holds by Corollary 3 in [DJW18]; (c) is true since

eε − 1 ≤ 2ε for ε ∈ [0, 1]. Thus, let γ = c1

(√
log(1/δ)

ε
√
n

)1/k

for some constant c. Then, for large enough

n, γk−1 < 1 and TV(M⊗n,M ′⊗n) ≤ 1 − 2δ, which implies that with probability at least δ, the error is

Ω(γk−1) = Ω

((√
log(1/δ)

ε
√
n

)1−1/k
)

.

Step 2: Corruption part. Recall that under α-Huber, for each private view Yi, it is independently corrupted
with probability α, and when it happens, Zi is sampled from an arbitrary noise distribution N ; otherwise,
Zi = Yi. To proceed, we will utilize the following useful fact.

Lemma 2 (Theorem 5.1 in [CGR18]). Let R1 and R2 be two distributions on X ; If for some α ∈ [0, 1/2),
we have that TV (R1, R2) ≤ α

1−α , then there exist two distributions N1 and N2 on the same probability
space such that

(1− α)R1 + αN1 = (1− α)R2 + αN2.

This result says that the Huber model with parameter α can corrupt two distributions that are close in TV
distance so that the outputs are essentially sampled from the same distribution, hence indistinguishable.
Another fact we will leverage is that LDP mechanism is a “contraction” in that it will make the TV distance
closer.

Lemma 3 (Corollary 2.9 in [KOV14]). For any ε > 0, let Q be any ε-LDP mechanism. Then, for any pair of
distributions P1 and P2, the induced marginals M1 and M2 satisfy

TV (M1,M2) ≤
eε − 1

eε + 1
TV (P1, P2) .
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The above fact indicates that for ε ∈ [0, 1], TV (M1,M2) ≤ O(ε)TV (P1, P2). With the above two facts,
it suffices for us to find two distributions P and P ′ for Xi with a “large” mean difference, such that the
induced marginal distributions for Yi is O(α). To this end, we again consider the two distributions in (6)
with a different choice of γ. Since TV (P, P ′) = 1/2 · γk, by Lemma 3, choosing γ = c′ · (α/ε)1/k for
some small constant c′ > 0 yields that TV (M,M ′) ≤ α ≤ α/(1− α). Hence, by Lemma 2, there exists
Huber contamination such that it is impossible to distinguish the final outputs. Hence, with a probability of
at least 1/2, the error is Ω

(
γk−1

)
= Ω

(
(α/ε)1−1/k

)
. We finally conclude that for any δ ∈ (0, 1/2), with

probability at least δ, for all large enough n, estimation error is Ω
(
γk−1

)
= Ω

(
(α/ε)1−1/k

)
. This finishes

the proof for the LTC setting.
As for the CTL setting, the second term in the lower bound follows the same proof as in Step 1. The key
difference lies in Step 2, i.e., the first term in the bound. In particular, since the contamination is before LDP,
one can now only choose γ = c′α1/k, i.e., no “contraction” from LDP anymore. As a result, the estimation
error is Ω

(
γk−1

)
= Ω

(
α1−1/k

)
.

F Proof of Proposition 2

Proof. Let us start with the LTC setting. As for privacy, it builds on the privacy guarantee of random response.
Privacy. By definition, we need to show that for any two inputs x, x′ ∈ X and y ∈

{
M eε+1

eε−1 ,−M eε+1
eε−1

}
P [Y = y|X = x]

P [Y = y|X = x′]
≤ eε.

Consider the case y = M eε+1
eε−1 and similar analysis applies to the other case. Let Px→M+ be the probability

that x is translated to M in our mechanism Q and Px→M− be the probability that x is translated to −M in
our mechanism Q. Similarly defines Px′→M+ and Px′→M− .
Thus, according to our Q in Algorithm 1) and let Pε :=

eε

eε+1 , we have

P [Y = y|X = x] = Px→M+Pε + Px→M−(1− Pε)

P
[
Y = y|X = x′

]
= Px′→M+Pε + Px′→M−(1− Pε)

As a result,

P [Y = y|X = x]

P [Y = y|X = x′]
=

Px→M+Pε + Px→M−(1− Pε)

Px′→M+Pε + Px′→M−(1− Pε)
≤ Pε

1− Pε
≤ eε.

Utility. For the utility part, we will divide the proof into four steps.
We draw the following informal diagram for an illustration of Algorithm 1.

Xi
Trunc.(M)−−−−−−→ X̄i

Random Rounding−−−−−−−−−−→ X ′
i

Random Response−−−−−−−−−−→ Yi
Corruption−−−−−−→ Zi

Trunc.(M eε+1
eε−1

)
−−−−−−−−−→ Z̄i

Sample Mean−−−−−−−→ µ̂n

Step 1: Bound the number of corrupted points.
By Chernoff bound for the binomial distribution, we have that for n ≥ 3 log(1/δ)/α

|B| ≤ 2αn, w.p. 1− δ,

where |B| denotes the total number of corrupted (“bad”) points. Let this event be E , and in the following
steps, we will condition on this event.
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Step 2: Bound the distance |E [X ′
i]− E [Xi] |.

|E [Xi]− E
[
X ′

i

]
| ≤ |E [Xi]− E

[
X̄i

]
|+ |E

[
X̄i

]
− E

[
X ′

i

]
|

(a)
= |E [Xi]− E

[
X̄i

]
|+ 0

≤ E [|Xi|1(|Xi| ≥ M)]

(b)

≤ 1

Mk−1

where (a) holds by the property of random rounding. Recall that, for any X̄i ∈ [−M,M ], X ′
i = M w.p.

1+X̄i/M
2 and X ′

i = −M w.p. 1−X̄i/M
2 . Thus, one can see E

[
X ′

i|X̄i

]
= X̄i, hence E

[
X̄i

]
= E [X ′

i]; (b)
holds by Hölder’s inequality and the fact k-th moment of Xi is upper bounded by one.
Step 3: Bound the distance |E [X ′

i]− µ̂n|.

|µ̂n − E
[
X ′

i

]
| = | 1

n

∑
i

Z̄i − E
[
X ′

i

]
|

= | 1
n

∑
i

Z̄i −
1

n

∑
i

Yi +
1

n

∑
i

Yi − E
[
X ′

i

]
|

(a)

≤ 2α ·M · e
ε + 1

eε − 1
+ | 1

n

∑
i

Yi − E
[
X ′

i

]
|

(b)

≤ 2α ·M · e
ε + 1

eε − 1
+O

(
M · e

ε + 1

eε − 1
·
√

log(1/δ)

n

)
w.p. 1− δ

where (a) holds by triangle inequality, the even E in step 1, and the fact that Z̄i, Yi are both bounded; (b)
holds by Hoeffding inequality. Note that Yi = eε+1

eε−1X
′
i w.p. eε

eε+1 and Yi = − eε+1
eε−1X

′
i w.p. 1

eε+1 . That is,
E [Yi] = E [X ′

i] and Yi = {M · eε+1
eε−1 ,−M · eε+1

eε−1}.
Step 4: Put the above two parts together.
For any ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least 1− δ,

|µ̂n − µ(P )| ≤ O

(
1

Mk−1
+

αM

ε
+

M

ε

√
log(1/δ)

n

)
.

Thus, choosing M = min

{(
ε
α

)1/k
,

( √
nε√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

(α
ε

)1−1/k
+

(
1

ε

√
log(1/δ)

n

)1−1/k
 ,

which finishes the proof for the LTC setting.
Now, let us move to the CTL setting. For privacy, it follows from the same idea as in the LTC setting.
For utility, we will divide the proof into five steps and leverage the following informal diagram for an
illustration of Algorithm 1.

Xi
Corruption−−−−−−→ Yi

Trunc.(M)−−−−−−→ Ȳi
Random Rounding−−−−−−−−−−→ Y ′

i
Random Response−−−−−−−−−−→ Zi

Sample Mean−−−−−−−→ µ̂n
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Step 1: Bound the number of corrupted points.
By Chernoff bound for the binomial distribution, we have that for n ≥ 3 log(1/δ)/α

|B| ≤ 2αn, w.p. 1− δ,

where |B| denotes the total number of corrupted (“bad”) points. Let this event be E , and in the following
steps, we will condition on this event.
Step 2: Bound the distance |µ̂n − 1

n

∑
i E
[
Ȳi
]
|.

|µ̂n − 1

n

∑
i

E
[
Ȳi
]
|
(a)
= | 1

n

∑
i

Zi −
1

n

∑
i

E
[
Y ′
i

]
|

(b)

≤ O

(
M · e

ε + 1

eε − 1
·
√

log(1/δ)

n

)
w.p. 1− δ,

where (a) holds by property of random rounding, i.e., E
[
Ȳi
]
= E [Y ′

i ]; (b) holds by property of random
response, i.e., E [Zi] = E [Y ′

i ] and Hoeffding inequality.
Step 3: Bound the distance | 1n

∑
i Ȳi −

1
n

∑
i E
[
Ȳi
]
|.

| 1
n

∑
i

Ȳi −
1

n

∑
i

E
[
Ȳi
]
| ≤ O

(
M ·

√
log(1/δ)

n

)
, w.p. 1− δ

where it simply follows from Hoeffding’s inequality.
Step 4: Bound the distance | 1n

∑
i Ȳi − E [Xi] |.

| 1
n

∑
i∈[n]

Ȳi − E [Xi] |
(a)
= | 1

n

∑
i∈G

Ȳi − E [Xi] +
1

n

∑
i∈B

Ȳi|

(b)

≤ | 1
n

∑
i∈G

Ȳi − E [Xi] |+ 2αM

= | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi]−
1

n

∑
i∈[B]

Xi1(|Xi| ≤ M)|+ 2αM

≤ | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi] |+ 4αM

≤ | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi1(|Xi| ≤ M)] |

︸ ︷︷ ︸
T1

+ |E [Xi1(|Xi| ≤ M)]− E [Xi] |︸ ︷︷ ︸
T2

+4αM

where in (a), G represents all “good” indexes that are not corrupted and B represents all “bad” indexes that
are corrupted; (b) follows from the boundedness of Ȳi and the event E in step 1.
For T2, by Hölder’s inequality and the fact k-th moment of Xi is upper bounded by one, we have

T2 ≤ O

(
1

Mk−1

)
.

For T1, we consider two cases: (i) k ∈ (1, 2) and (ii) k ≥ 2 when applying Bernstein’s inequality.
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For case (i), we note that E
[
X2

i 1(|Xi| ≤ M)
]
= E

[
|Xi|k|Xi|2−k1(|Xi| ≤ M)

] (a)
≤ E

[
|Xi|kM2−k

]
≤

M2−k, where (a) follows from k < 2. Thus, by Bernstein’s inequality, we have

T1 ≤ O

(√
M2−k log(1/δ)

n
+

M log(1/δ)

n

)
.

For case (ii), we note that E
[
X2

i 1(|Xi| ≤ M)
]
≤ E

[
X2

i

]
≤ 1. Thus, by Bernstein’s inequality, we have

T1 ≤ O

(√
log(1/δ)

n
+

M log(1/δ)

n

)
.

Step 5: Put everything together. Case (i): for any k ∈ (1, 2), ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we
have with probability at least 1− δ,

|µ̂n − µ(P )| ≤ O

(√
M2−k log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)
+O(αM) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

( log(1/δ)

n

)1−1/k

+ α1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ α1−1/k

 .

Case (ii): for any k ≥ 2, ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least 1− δ,

|µ̂n − µ(P )| ≤ O

(√
log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)
+O(αM) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

√ log(1/δ)

n
+

(
log(1/δ)

n

)1−1/k

+ α1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ α1−1/k

 .
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Finally, combining the above two cases, we see that when n ≥ log(1/δ), for any k > 1, it suffices to choose

M = min

{(
1
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and obtain that

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ α1−1/k

 .

which finishes the proof for the CTL setting.

G Proof of the Upper Bound for the C-LDP-C Setting

After the proofs for the previous two settings, we can easily establish the upper bound for the C-LDP-C
setting. For completeness, we also provide a detailed proof. To elucidate the utility of our approach, we will
structure the proof into four distinct steps, building upon the derivation outlined previously.

Xi
Corruption−−−−−−→ Yi

Trunc.(M)−−−−−−→ Ȳi
Random Rounding−−−−−−−−−−→ Y ′

i
Random Response−−−−−−−−−−→ Zi

Corruption−−−−−−→ Z ′
i

Trunc.(M eε+1
eε−1

)
−−−−−−−−−→ Z̄i

Sample Mean−−−−−−−→ µ̂n

Step 1: Bound the distance |E [Y ′
i ]− µ̂n|.

According to the analysis in the LTC setting, we can directly derive

|µ̂n − E[Y ′
i ]| =

∣∣∣∣∣ 1n∑
i

Z̄i − E[Y ′
i ]

∣∣∣∣∣
≤ 2α ·M · e

ε + 1

eε − 1
+O

(
M · e

ε + 1

eε − 1
·
√

log(1/δ)

n

)
w.p. 1− δ

Step 2: Bound the distance | 1n
∑

i Ȳi −
1
n

∑
i E
[
Ȳi
]
|.

| 1
n

∑
i

Ȳi −
1

n

∑
i

E
[
Ȳi
]
| ≤ O

(
M ·

√
log(1/δ)

n

)
, w.p. 1− δ

where it simply follows from Hoeffding’s inequality.
Step 3: Bound the distance | 1n

∑
i Ȳi − E [Xi] |.

From the analysis in the CTL setting, we once again derive

| 1
n

∑
i∈[n]

Ȳi − E [Xi] | ≤ | 1
n

∑
i∈[n]

Xi1(|Xi| ≤ M)− E [Xi1(|Xi| ≤ M)] |

︸ ︷︷ ︸
T1

+ |E [Xi1(|Xi| ≤ M)]− E [Xi] |︸ ︷︷ ︸
T2

+4αM

Step 4: Put everything together.
Case (i): for any k ∈ (1, 2), ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least
1− δ,

|µ̂n − µ(P )| ≤ O

(√
M2−k log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)

+O(αM) +O(
αM

ε
) +O

(
M

ε
·
√

log(1/δ)

n

)
.
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Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

( log(1/δ)

n

)1−1/k

+ (
α

ε
)1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ (
α

ε
)1−1/k

 .

Case (ii): for any k ≥ 2, ε ∈ [0, 1], any δ ∈ (0, 1) and any P ∈ Pk, we have with probability at least 1− δ,

|µ̂n − µ(P )| ≤ O

(√
log(1/δ)

n

)
+O

(
M log(1/δ)

n

)
+O

(
1

Mk−1

)

+O(αM) +O(
αM

ε
) +O

(
M

ε
·
√

log(1/δ)

n

)
.

Thus, choosing M = min

{(
n

log(1/δ)

)1/k
,
(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

, yields that

|µ̂n − µ(P )| ≤ O

√ log(1/δ)

n
+

(
log(1/δ)

n

)1−1/k

+ (
α

ε
)1−1/k +

(√
log(1/δ)

ε
√
n

)1−1/k
 .

Hence, when n ≥ log(1/δ), we have

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ (
α

ε
)1−1/k

 .

Finally, combining the above two cases, we see that when n ≥ log(1/δ), for any k > 1, it suffices to choose

M = min

{(
ε
α

)1/k
,

(
ε
√
n√

log(1/δ)

)1/k
}

and obtain that

|µ̂n − µ(P )| ≤ O

(√log(1/δ)

ε
√
n

)1−1/k

+ (
α

ε
)1−1/k

 .

H Proof of Proposition 3

Proof. As in the section for mean estimation, we first focus on the LTC setting and divide the lower bound
proof into two steps.
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Step 1: Without corruption. In this case, we aim to establish the second term in the lower bound. We
consider the first MAB instance I as follows. Let γ > 0 be determined later and

P1(X = 1/γ) = 1/2 · γk, P1(X = 0) = 1− 1/2 · γk

Pa(X = 1/γ) = 1/4 · γk, Pa(X = 0) = 1− 1/4 · γk. ∀a ̸= 1. (7)

Thus, one can see that I ∈ MAB(k) for a proper choice of γ and arm 1 is the optimal arm for instance I . We
let Ma be the induced marginal distribution of Pa via any ε-LDP channel and EI [·] denote the expectation
over PI , which is over the randomness in the marginal distributions {Ma}a∈[K] and policy π.
Then, we construct a “coupled” instance I ′ of I as follows. Let i = argminj>1 EI [Nj(T )], i.e., the arm
between a2 and aK that has the minimum number of pulls under instance I . Define the second instance I ′

that only differs in the distribution for arm i compared to instance I

Pi(X = 1/γ) = 3/4 · γk, Pi(X = 0) = 1− 3/4 · γk. (8)

Thus, I ′ ∈ MAB(k) and arm i is the optimal arm for instance I ′. By definition, we also have EI [Ni(T )] ≤
T/(K − 1).
For any instance I and policy π, we let RT (π, I) be its corresponding expected regret. Then, by standard
argument and noting that the mean gap is ∆ := 1/4 · γk−1, we have

RT (π, I) +RT (π, I
′) ≥ T

2
·∆ · (PI [N1(T ) ≤ T/2] + PI′ [N1(T ) ≥ T/2])

(a)

≥ T∆

4
exp(−KL (PI∥PI′))

(b)
=

T∆

4
exp(−EI [Ni(T )] ·KL

(
Mi∥M ′

i

)
)

(c)

≥ T∆

4
exp(−EI [Ni(T )] · 4(eε − 1)2 · (TV

(
Pi, P

′
i

)
)2)

(d)

≥ T∆

4
exp

(
− T

K − 1
· 4(eε − 1)2 · (TV

(
Pi, P

′
i

)
)2
)

(e)
=

T∆

4
exp

(
− T

K − 1
· 4(eε − 1)2 · γ

2k

4

)
where (a) holds by Bretagnolle–Huber inequality; (b) follows from chain rule of KL divergence; (c) holds by
Theorem 1 in [DJW18]; (d) is true since EI [Ni(T )] ≤ T/(K − 1); (e) holds by definition of TV distance.
Thus, putting everything together and noting that for ε ∈ [0, 1], eε − 1 ≤ 2ε, yields that

RT (π, I) +RT (π, I
′) ≥ T∆

4
exp

(
−4

ε2Tγ2k

K − 1

)
.

Thus, suppose T ≥ K/ε2 and choosing γ = (K/(ε2T ))1/2k, one can check that all the required conditions on

γ are satisfied and we finally have that max{RT (π, I),RT (π, I
′)} ≥ Ω

(
Tγk−1

)
= Ω

(
T

k+1
2k

(
K
ε2

) k−1
2k

)
.

Step 2: Corruption part. In this case, we aim to establish the first term in the lower bound.
This part basically shares the same argument as before for mean estimation. Note that the only difference be-
tween I and I ′ is the distribution for arm i. Then, we apply the same argument as in the proof of Proposition 1
to Pi and P ′

i . Hence, we have that there exists Huber corruptions so that one cannot distinguish between Pi

and P ′
i , and hence I and I ′. As a result, the total expected regret is Ω

(
Tγk−1

)
= Ω(T (α/ε)1−1/k).

Finally, for the CTL setting, the first step is the same and second step only differs in that there is no
“contraction” effect as in the proof of Proposition 1.
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I Proof of Proposition 4

Proof. Let us start with the LTC case. We divide the set of all sub-optimal arms G into two groups G1 and
G2 := G \ G1, where G1 = {a ∈ [K] \ a∗ : c′

(
α
ε

)1−1/k
< 1

2∆a} for some universal constant c′ chosen

later. Hence, G2 = {a ∈ [K] \ a∗ : c′
(
α
ε

)1−1/k ≥ 1
2∆a}, which implies that the total expected regret from

suboptimal arms in G2 is upper bounded by O
(
T
(
α
ε

)1−1/k
)

. Thus, it remains to bound the total expected
regret of pulling suboptimal arms in G1. To this end, for each i ∈ G1, we aim to show that

E [Ni(T )] ≤ O

(
log T

ε2(∆i)
2k
k−1

+
log T

α

)
. (9)

Let us first assume (9) holds and see how we can arrive at our claimed upper bound. By the definition of
expected regret, we have

R(k, ε, α, T ) =
∑
i∈G1

∆iE [Ni(T )] +
∑
i∈G2

∆iE [Ni(T )]

≤
∑
i∈G1

∆iE [Ni(T )] +O

(
T
(α
ε

)1−1/k
)
,

where inequality holds by the definition of G2. It remains to translate the first term into a problem-independent
one. To this end, we further divide the arms in G1 into two groups: one group consists of all arms that satisfy
∆i < η for some constant η > 0 and another one contains all arms that satisfy ∆i ≥ η. Thus, by (9), we have

∑
i∈G1

∆iE [Ni(T )] ≤ ηT +O

(
K log T

ε2η
k+1
k−1

+
K log T

α

)
.

Choosing η =
(
K log T
ε2T

) k−1
2k , yields that the total expected regret satisfies

R(k, ε, α, T ) ≤ O

((
K log T

ε2

) k−1
2k

T
k+1
2k +

K log T

α
+ T

(α
ε

)1−1/k
)
.

Finally, for very small α, one can replace it with its upper bound ᾱ to optimize the regret.
It remains to establish (9). First note that O(log T/α) basically follows from the burn-in period. Thus, we
only need to bound the total number of pulls after the burn-in period. We denote by N ′

i(t) the total number of
by time t after the burn-in period, i.e., it is equal to Ni(t) minus the total number of burn-in plays of arm i. In
the following, we will show that

E
[
N ′

i(T )
]
≤ C1

log T

ε2(∆i)
2k
k−1

+ C2, (10)

for some constants C1 and C2.
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To this end, for t that is after the burn-in period of arm i ∈ G1, if at = i, then one of the following must be
true:

UCBa⋆(t) ≤ µ(Pa⋆) (11)

µ̂i,Ni(t) > µ(Pi) + c
(α
ε

)1−1/k
+ c

(
1

ε

√
log(t4)

Ni(t)

)1−1/k

(12)

N ′
i(t) < C

log T

ε2(∆i)
2k
k−1

(13)

This is because if all three are not true, then we have

UCBa⋆(t) > µ(Pa⋆)

= µ(Pi) + ∆i

(a)

≥ µ(Pi) +
1

2
∆i + c′

(α
ε

)1−1/k

(b)

≥ µ(Pi) + 2c

(
1

ε

√
log(t4)

N ′
i(t)

)1−1/k

+ c′
(α
ε

)1−1/k

(c)

≥ µ(Pi) + 2c

(
1

ε

√
log(t4)

Ni(t)

)1−1/k

+ c′
(α
ε

)1−1/k

(d)

≥ µ̂i,Ni(t) + c

(
1

ε

√
log(t4)

Ni(t)

)1−1/k

+ c
(α
ε

)1−1/k

= UCBi(t)

where (a) holds by the fact that i ∈ G1; (b) holds by choosing a large constant C in (13); (c) is true since
Ni(t) > N ′

i(t); (d) holds by the inverse direction of (12) and choosing c′ = 2c.
Let t′ be the time just after the burn-in period, then we have

E
[
N ′

i(T )
]
= E

∑
t≥t′

1(at = i)

 ≤ C
log T

ε2(∆i)
2k
k−1

+
∑
t≥t′

E [1(at = i and (13) is false)]

(a)

≤ C
log T

ε2(∆i)
2k
k−1

+
∑
t≥t′

E [1((11) is true or (12) is true)]

where (a) holds by the above claim, i.e., if at = i and (13) is false, then one of (11) and (12) must be true.
Then, by our mean concentration result and union bounds, we can upper bound the second term above as

E [1((11) is true or (12) is true)] ≤ 2

t∑
s=1

1

t4
=

2

t3
.

Putting them together, we have established (10), hence the result. The proof for CTL setting is essentially the
same with the only difference in the definition of G1 and G2.
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J Proof of Proposition 5

Proof. Without corruption. We consider two instances in MAB(β⋆, k). In particular, we consider two-arm
MABs I and I ′:

For I : µI
1 := µ(P I

1 ) = 1/2 · γk−1, µI
2 := µ(P I

2 ) = 1/4 · γk−1

For I ′ : µI′
1 := µ(P I

1 ) = 1/2 · γk−1, µI′
2 := µ(P I

2 ) = 3/4 · γk−1 (14)

These distributions can be constructed in the same way as in the proof of Proposition 3 (cf. (7)). Moreover,
for the behavior policy π, we have π(2) = 1/β⋆ and π(1) = 1 − 1/β⋆. We now verify that both (π, µI)
and (π, µI′) are in MAB(β⋆, k). By construction, each distribution is belonging to Pk. It remains to verify
that 1/π(a⋆) ≤ β⋆. For I ′, we have 1/π(2) = β⋆. And for I , we have 1/π(1) = 1/(1− 1/β⋆) ≤ β⋆ when
β⋆ ≥ 2.
Now, we proceed to apply classic Le Cam’s method. Let loss/sub-optimality of any final chosen arm
â ∈ {1, 2} under I and I ′ be ℓ(â; I), ℓ(â; I ′). Then, by our construction, we have

ℓ(â; I) + ℓ(â; I ′) ≥ 1/4 · γk−1.

Thus, by Le Cam’s method and Bretagnolle–Huber inequality, we have

SubOpt∗(β⋆, k, ε, α,N) ≥ γk−1

16
exp

(
−KL

(
M I

π

∥∥M I′
π

))
,

where KL
(
M I

π

∥∥M I′
π

)
is the private KL divergence between two MAB instances. By chain rule of KL

divergence and Theorem 1 in [DJW18], we have

KL
(
M I

π

∥∥M I′
π

)
≤ N

β⋆
4(eε − 1)2

(
TV

(
P I
2 , P

I′
2

))2
.

Thus, noting that for ε ∈ [0, 1], eε − 1 ≤ 2ε and
(
TV

(
P I
2 , P

I′
2

))2
= γ2k

4 , we have that

SubOpt∗(β⋆, k, ε, α,N) ≥ γk−1

16
exp

(
−ε2Nγ2k

4β⋆

)
.

Finally, for a large enough N , choosing γ = (β⋆/(ε2N))1/2k, yields that

SubOpt∗(β⋆, k, ε, α,N) ≥ Ω

(1

ε

√
β⋆

N

)1−1/k
 .

Corruption part. By our construction (cf. (14) (7), (8)) we have that TV
(
P I
2 , P

I′
2

)
= γk

2 . Then, a similar
idea as in the proof of Proposition 1 applies here. That is, for the LTC setting, by the contraction of LDP,
we can set γk = Θ(αε ) so that TV

(
M I

2 ,M
I′
2

)
≤ α. Thus, one cannot distinguish I and I ′ under α-Huber

model. Thus, one has to incur a sub-optimality gap as Ω(γk) =
(
α
ε

)1−1/k. In contrast, due to no contraction
by LDP first, one can only set γk = Θ(α), which leads to the final result.
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K Proof of Proposition 6

Proof. We will focus on the LTC case, since the CTL case is nearly the same with a minor change in the
confidence bound. Let E = E1 ∩ E2 where

E1 := {∀a ∈ [K], |r̂(a)− r(a)| ≤ b(a)}

E2 := {N(a⋆) ≥ 1

2
Nπ(a⋆)}.

Let us first assume that P [E ] ≥ 1− 2δ and see how we can prove the final result. Then, we will establish this
high-probability event in the end. Hence, condition the event E and define LCB(a) := r̂(a)− b(a), we have

r(a⋆)− r(â) = r(a⋆)− LCB(a⋆) + LCB(a⋆)− LCB(â) + LCB(â)− r(â)

≤ 2b(a⋆)

≤ 2c
(α
ε

)1−1/k
+ 2c

1

ε

√
log(2K/δ)

Na⋆

1−1/k

.

Then, by the definition of β⋆ and E , we can further lower bound Na⋆ by N
2β⋆ . Then, by the bounded mean of

each arm, and choosing δ = 1/N , we have the claimed expected sub-optimality result.
It remains to bound the probability of E . For E2, by standard Chernoff bound, we have P [E2] ≥ 1− δ when
N ≥ 8β⋆ log(1/δ). For E1, we have the following argument. For any arm a such that Na is larger than the
burn-in threshold, the concentration in E1 follows from our high-probability mean estimation result. For all
other arms, by construction and the condition that all arms have mean between [−1, 1], we have

r̂(a)− b(a) = −1 ≤ r(a) ≤ r̂(a) + b(a) = 1,

which enables us to establish our claim P [E ] ≥ 1− 2δ.
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