
1

Asymptotically Optimal Load Balancing in
Large-scale Heterogeneous Systems with Multiple

Dispatchers

Xingyu Zhou

INFORMS Annual Meeting’20



2

Joint work with...

Ness Shroff, OSU Adam Wierman, Caltech



3

Load Balancing...



4

The Building Block...

µ1

µN

Key features:

I Multiple dispatchers

I Heterogeneous servers



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



5

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

I Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?



6

Our Proposed Design Framework: LED

The Local-Estimation-Driven (LED) framework...

1. Memory: Each dispatcher has a local memory storing its own
estimates of each server’s queue length (often outdated)

2. Dispatching: the dispatching decision at each dispatcher is made
purely based on local memory

3. Updating: the local memory is updated with the true queue length
via messages between dispatchers and servers

Key contributions...

1. Sufficient conditions on dispatching and updating strategies:
throughput optimality and delay optimality in heavy traffic

2. Shed light on recently proposed open problem on LB with delayed
information [David Lipshutz’19]



6

Our Proposed Design Framework: LED

The Local-Estimation-Driven (LED) framework...

1. Memory: Each dispatcher has a local memory storing its own
estimates of each server’s queue length (often outdated)

2. Dispatching: the dispatching decision at each dispatcher is made
purely based on local memory

3. Updating: the local memory is updated with the true queue length
via messages between dispatchers and servers

Key contributions...

1. Sufficient conditions on dispatching and updating strategies:
throughput optimality and delay optimality in heavy traffic

2. Shed light on recently proposed open problem on LB with delayed
information [David Lipshutz’19]



7

One Concrete Example...

5 0 1

4 2 1

A

B

µ1

µ2

µ3

Memory: Each dispatcher keeps its own local estimates (often
outdated)...

I Dispatcher A ‘believes’ that: server 1 with queue length 5, server 2
with 0, and server 3 with 1

I Dispatcher B ‘believes’ that: server 1 with queue length 4, server 2
with 2, and server 3 with 1



8

One Concrete Example...

5 0 1

A

4 2 1

B

µ1

µ2

µ3

Dispatching strategy: Local-Join-Shortest-Queue (L-JSQ)

I each dispatcher independently routes new arrivals to the server with
the shortest local estimates

I e.g., Dispatcher A routes to server 2, Dispatcher B routes to server 3



9

One Concrete Example...

0 1

4 2

3

3

A

B

µ1

µ2

µ3

Updating strategy: Push-based update via sampling

I each dispatcher independently randomly samples d servers with
probability p

I update its corresponding local estimates with the true queue lengths



10

Related Works...

1. LB in multiple dispatchers:
I JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable

in general for fixed number of heterogeneous servers [Zhou et al’ 17]
I Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in

the large-system regime; assume homogeneous loads across
dispatchers

2. LB with local memory:
I Power-of-d in [Anselmi and Dufour’ 18], JSQ in [van der Boor,’ 19],

a class of policies in [Gamarnik’ 20]
I All of them consider a single dispatcher

3. Most related to ours is the recent work [Vargaftik et al’ 20]

I They only consider one particular dispatching strategy, i.e.,
Local-JSQ.

I They only investigate stability



10

Related Works...

1. LB in multiple dispatchers:
I JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable

in general for fixed number of heterogeneous servers [Zhou et al’ 17]
I Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in

the large-system regime; assume homogeneous loads across
dispatchers

2. LB with local memory:
I Power-of-d in [Anselmi and Dufour’ 18], JSQ in [van der Boor,’ 19],

a class of policies in [Gamarnik’ 20]
I All of them consider a single dispatcher

3. Most related to ours is the recent work [Vargaftik et al’ 20]

I They only consider one particular dispatching strategy, i.e.,
Local-JSQ.

I They only investigate stability



10

Related Works...

1. LB in multiple dispatchers:
I JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable

in general for fixed number of heterogeneous servers [Zhou et al’ 17]
I Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in

the large-system regime; assume homogeneous loads across
dispatchers

2. LB with local memory:
I Power-of-d in [Anselmi and Dufour’ 18], JSQ in [van der Boor,’ 19],

a class of policies in [Gamarnik’ 20]
I All of them consider a single dispatcher

3. Most related to ours is the recent work [Vargaftik et al’ 20]

I They only consider one particular dispatching strategy, i.e.,
Local-JSQ.

I They only investigate stability



11

Model...

5 0 1

4 2 1

A

B

µ1

µ2

µ3

I M dispatchers and N servers in discrete-time.
I Arrival: total number of arriving tasks AΣ(t) with rate λΣ, general

distribution 1

I AΣ(t) integer-valued i.i,d across time-slots
I AΣ(t) =

∑M
m=1 A

m(t), Am(t) arrivals at dispatcher m
I assume P (Am(t) > 0) ≥ p0 > 0, ∀(m, t) ∈M× N,

I Service: average number of tasks can be served at server k is µk ,
general distribution.

I Sn(t) is integer-valued, i.i.d across time and independent of arrival
and queue lengths

I Memory: Q̃m(t)) = (Qm
1 (t), . . . ,Qm

N (t))

I System states: Z (t) = (Q(t), {Q̃1(t))), . . . , Q̃M(t)})
1with all moments bounded by absolute constants



12

Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic...

Define ε :=
∑
µn − λΣ

Definition (Throughput Optimality)
A LB policy is throughput optimal if the system is positive recurrent

under any ε > 0 and all the moments of ‖Q(ε)‖ are finite

Note: this definition is stronger than simple stability

Definition (Heavy-traffic Delay Optimality)
A LB policy is said to be heavy-traffic delay optimal in steady-state if the

steady-state queue length vector Q
(ε)

satisfies

lim
ε↓0

εE

[
N∑

n=1

Q
(ε)

n

]
= lim

ε↓0
εE [q̄ε] ,

where E [q̄ε] is the mean queue length in resource-pooling system.

Resource-pooling system: pool all the service into one super single server



12

Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic... Define ε :=

∑
µn − λΣ

Definition (Throughput Optimality)
A LB policy is throughput optimal if the system is positive recurrent

under any ε > 0 and all the moments of ‖Q(ε)‖ are finite

Note: this definition is stronger than simple stability

Definition (Heavy-traffic Delay Optimality)
A LB policy is said to be heavy-traffic delay optimal in steady-state if the

steady-state queue length vector Q
(ε)

satisfies

lim
ε↓0

εE

[
N∑

n=1

Q
(ε)

n

]
= lim

ε↓0
εE [q̄ε] ,

where E [q̄ε] is the mean queue length in resource-pooling system.

Resource-pooling system: pool all the service into one super single server



12

Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic... Define ε :=

∑
µn − λΣ

Definition (Throughput Optimality)
A LB policy is throughput optimal if the system is positive recurrent

under any ε > 0 and all the moments of ‖Q(ε)‖ are finite

Note: this definition is stronger than simple stability

Definition (Heavy-traffic Delay Optimality)
A LB policy is said to be heavy-traffic delay optimal in steady-state if the

steady-state queue length vector Q
(ε)

satisfies

lim
ε↓0

εE

[
N∑

n=1

Q
(ε)

n

]
= lim

ε↓0
εE [q̄ε] ,

where E [q̄ε] is the mean queue length in resource-pooling system.

Resource-pooling system: pool all the service into one super single server



13

Dispatching Preference...

I Fix a dispatcher m, let σt(·) be a permutation of (1, 2, . . . ,N) that
satisfies

Q̃m
σt(1)(t) ≤ Q̃m

σt(2)(t) ≤ . . . ≤ Q̃m
σt(N)(t).

I Pm
n (t) : probability of routing to server n at dispatcher m in

time-slot t (again, based on local estimates)

I ∆m
n (t) : preference of the n-th shortest local estimate at dispatcher

m, given by

∆m
n (t) := Pm

σt(n)(t)− µσt (n)∑
µn

I ∆m
n (t) > 0 means that policy has stronger preference of n-th shortest

local estimates compared to (weighted) random routing
I Note that

∑N
n=1 ∆m

n (t) = 0
I Key: how to allocate the zero-sum?



13

Dispatching Preference...

I Fix a dispatcher m, let σt(·) be a permutation of (1, 2, . . . ,N) that
satisfies

Q̃m
σt(1)(t) ≤ Q̃m

σt(2)(t) ≤ . . . ≤ Q̃m
σt(N)(t).

I Pm
n (t) : probability of routing to server n at dispatcher m in

time-slot t (again, based on local estimates)

I ∆m
n (t) : preference of the n-th shortest local estimate at dispatcher

m, given by

∆m
n (t) := Pm

σt(n)(t)− µσt (n)∑
µn

I ∆m
n (t) > 0 means that policy has stronger preference of n-th shortest

local estimates compared to (weighted) random routing
I Note that

∑N
n=1 ∆m

n (t) = 0
I Key: how to allocate the zero-sum?



14

δ-tilted Sum Condition

∆m
n (t) := Pm

σt(n)(t)− µσt (n)∑
µn

Definition
Fix a dispatcher m, for all 1 ≤ j ≤ N − 1,

∑j
n=1 ∆m

n (t) ≥ δ for some
constant δ ≥ 0 at each time-slot t.

Intuitions: for any first k (k < N) shortest local estimates, it has at least
δ total preference

Examples: suppose all µn are equal and Q̃m(t)) = (5, 0, 1)

I δ-tilted Sum Condition satisfied with all Pm(t) s.t. for some δ ≥ 0

I Pm
2 (t) ≥ δ + 1/3, Pm

2 (t) + Pm
3 (t) ≥ δ + 2/3, and

∑
Pm
n (t) = 1

Implications:

I this condition also generalizes previous definition in [Zhou et al’

17,18]

I as a result, it allows us to establish new results (e.g., L-Pod),
discussed later



14

δ-tilted Sum Condition

∆m
n (t) := Pm

σt(n)(t)− µσt (n)∑
µn

Definition
Fix a dispatcher m, for all 1 ≤ j ≤ N − 1,

∑j
n=1 ∆m

n (t) ≥ δ for some
constant δ ≥ 0 at each time-slot t.

Intuitions: for any first k (k < N) shortest local estimates, it has at least
δ total preference
Examples: suppose all µn are equal and Q̃m(t)) = (5, 0, 1)

I δ-tilted Sum Condition satisfied with all Pm(t) s.t. for some δ ≥ 0

I Pm
2 (t) ≥ δ + 1/3, Pm

2 (t) + Pm
3 (t) ≥ δ + 2/3, and

∑
Pm
n (t) = 1

Implications:

I this condition also generalizes previous definition in [Zhou et al’

17,18]

I as a result, it allows us to establish new results (e.g., L-Pod),
discussed later



15

Main Results

We have the following sufficient condition (informal) for throughput
optimality...
Define: Imn (t) indicates server n’s true queue length is updated at
dispatcher m

Theorem
Consider an LED policy if

I dispatching strategy satisfies δ-tilted sum condition for some δ ≥ 0

I updating strategy satisfies that E [Imn (t) | Z (t)] > p for any
Z (t),m, n and some p > 0

Then, it is throughput optimal

Remark:

I This directly generalizes LSQ policy in [Vargaftik et al’ 20] in terms of
stability



16

Main Results
We have the following sufficient condition (informal) for heavy-traffic
delay optimality...

Theorem
Consider an LED policy if

I dispatching strategy satisfies δ-tilted sum condition for some strictly
positive constant δ

I updating strategy satisfies that E [Imn (t) | Z (t)] ≥ p > 0 for any
Z (t),m, n independent of previous updates;

I both δ and p are independent of ε

Then, it is heavy-traffic delay optimal

Remark:

I This directly implies a large class of LED policies are heavy-traffic
delay optimal, including the specific one LSQ in [Vargaftik et al’ 20]

I This also sheds light on heavy-traffic delay optimality in delayed
queue length information, raised in [David Lipshutz’19]

I Moreover, the single dispatcher with accurate information is just a
special case of ours



16

Main Results
We have the following sufficient condition (informal) for heavy-traffic
delay optimality...

Theorem
Consider an LED policy if

I dispatching strategy satisfies δ-tilted sum condition for some strictly
positive constant δ

I updating strategy satisfies that E [Imn (t) | Z (t)] ≥ p > 0 for any
Z (t),m, n independent of previous updates;

I both δ and p are independent of ε

Then, it is heavy-traffic delay optimal

Remark:

I This directly implies a large class of LED policies are heavy-traffic
delay optimal, including the specific one LSQ in [Vargaftik et al’ 20]

I This also sheds light on heavy-traffic delay optimality in delayed
queue length information, raised in [David Lipshutz’19]

I Moreover, the single dispatcher with accurate information is just a
special case of ours



17

Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20])

I choose i∗ ∈ arg minn{Q̃m
n }

I ∆m
1 (t) = 1− µσt (1)/µΣ > 0 and all others are less than 0

I It can be easily seen that δ-tilted sum condition is satisfied

2. L-JBA: Local-Join-Below-Average
I Let Q̄m(t) = 1

N

∑
n Q̃

m
n (t) and A := {n : Q̃m

n (t) ≤ Q̄m(t)}
I Then, for each i ∈ A, Pm

i (t) = µi/
∑

n∈A µn, and for i /∈ A,
Pm
i (t) = 0.

I it also satisfies the condition, although it needs the information on µ

3. L-Pod: Local-Power-of-d
I randomly samples d servers, join the one with the shortest local

estimates
I it turns out that even with heterogeneous servers, L-Pod can still

satisfy δ-tilted sum as long as the services rates meet a certain
condition



17

Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20])

I choose i∗ ∈ arg minn{Q̃m
n }

I ∆m
1 (t) = 1− µσt (1)/µΣ > 0 and all others are less than 0

I It can be easily seen that δ-tilted sum condition is satisfied

2. L-JBA: Local-Join-Below-Average
I Let Q̄m(t) = 1

N

∑
n Q̃

m
n (t) and A := {n : Q̃m

n (t) ≤ Q̄m(t)}
I Then, for each i ∈ A, Pm

i (t) = µi/
∑

n∈A µn, and for i /∈ A,
Pm
i (t) = 0.

I it also satisfies the condition, although it needs the information on µ

3. L-Pod: Local-Power-of-d
I randomly samples d servers, join the one with the shortest local

estimates
I it turns out that even with heterogeneous servers, L-Pod can still

satisfy δ-tilted sum as long as the services rates meet a certain
condition



17

Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20])

I choose i∗ ∈ arg minn{Q̃m
n }

I ∆m
1 (t) = 1− µσt (1)/µΣ > 0 and all others are less than 0

I It can be easily seen that δ-tilted sum condition is satisfied

2. L-JBA: Local-Join-Below-Average
I Let Q̄m(t) = 1

N

∑
n Q̃

m
n (t) and A := {n : Q̃m

n (t) ≤ Q̄m(t)}
I Then, for each i ∈ A, Pm

i (t) = µi/
∑

n∈A µn, and for i /∈ A,
Pm
i (t) = 0.

I it also satisfies the condition, although it needs the information on µ

3. L-Pod: Local-Power-of-d
I randomly samples d servers, join the one with the shortest local

estimates
I it turns out that even with heterogeneous servers, L-Pod can still

satisfy δ-tilted sum as long as the services rates meet a certain
condition



18

More on L-Pod

Proposition
Suppose the service rate vector µµµ ∈ RN

+ satisfies∑j
n=1 µ[n]

µΣ
+ δ ≤ 1−

(
N−j
d

)(
N
d

) ∀1 ≤ j ≤ N − 1, (1)

for some constant δ ≥ 0, in which µ[n] is the n-th largest service rate.
Then, L-Pod satisfies the δ-tilted sum condition.

Remark:

I For the single dispatcher with accurate queue length information
(which is a special case of ours), [Hurtado-Lange and Maguluri’ 20])
derived similar conditions

I If d = 1, the only possible µµµ and δ are µn = µ for all n and δ = 0

I If d = N, then all µµµ ∈ RN
+ satisfies (1) with δ = µmin/µΣ > 0



18

More on L-Pod

Proposition
Suppose the service rate vector µµµ ∈ RN

+ satisfies∑j
n=1 µ[n]

µΣ
+ δ ≤ 1−

(
N−j
d

)(
N
d

) ∀1 ≤ j ≤ N − 1, (1)

for some constant δ ≥ 0, in which µ[n] is the n-th largest service rate.
Then, L-Pod satisfies the δ-tilted sum condition.

Remark:

I For the single dispatcher with accurate queue length information
(which is a special case of ours), [Hurtado-Lange and Maguluri’ 20])
derived similar conditions

I If d = 1, the only possible µµµ and δ are µn = µ for all n and δ = 0

I If d = N, then all µµµ ∈ RN
+ satisfies (1) with δ = µmin/µΣ > 0



19

Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based

1. Push-based: each dispatcher takes the initiative to sample servers
I e.g., at the end of each time-slot, w.p. p̃ > 0 to randomly sample d

queues and update the local estimates with the true lengths
I thus, E [Imn (t) | Z(t)] ≥ p > 0 is satisfied with p = p̃d/N

2. Pull-based: each server takes the initiative to sample dispatchers
I e.g., at the end of each time-slot, if server n finishes one or more

tasks, it randomly samples one dispatcher
I if Qn = 0, it reports w.p. 1
I if Qn > 0, it reports w.p. p̃ > 0
I it has been verified in [Vargaftik et al’ 20]), this satisfies

E [Imn (t) | Z(t)] ≥ p > 0 for arbitrarily small p̃ > 0

Of course, there are many more...



19

Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based

1. Push-based: each dispatcher takes the initiative to sample servers
I e.g., at the end of each time-slot, w.p. p̃ > 0 to randomly sample d

queues and update the local estimates with the true lengths
I thus, E [Imn (t) | Z(t)] ≥ p > 0 is satisfied with p = p̃d/N

2. Pull-based: each server takes the initiative to sample dispatchers
I e.g., at the end of each time-slot, if server n finishes one or more

tasks, it randomly samples one dispatcher
I if Qn = 0, it reports w.p. 1
I if Qn > 0, it reports w.p. p̃ > 0
I it has been verified in [Vargaftik et al’ 20]), this satisfies

E [Imn (t) | Z(t)] ≥ p > 0 for arbitrarily small p̃ > 0

Of course, there are many more...



19

Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based

1. Push-based: each dispatcher takes the initiative to sample servers
I e.g., at the end of each time-slot, w.p. p̃ > 0 to randomly sample d

queues and update the local estimates with the true lengths
I thus, E [Imn (t) | Z(t)] ≥ p > 0 is satisfied with p = p̃d/N

2. Pull-based: each server takes the initiative to sample dispatchers
I e.g., at the end of each time-slot, if server n finishes one or more

tasks, it randomly samples one dispatcher
I if Qn = 0, it reports w.p. 1
I if Qn > 0, it reports w.p. p̃ > 0
I it has been verified in [Vargaftik et al’ 20]), this satisfies

E [Imn (t) | Z(t)] ≥ p > 0 for arbitrarily small p̃ > 0

Of course, there are many more...



20

Recall our motivating questions

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

I No, due to herd behavior, it actually behaves poorly
I Thus, how can we avoid this?

Answer: LED could be one solution due to its intrinsic randomness



21

Inaccurate information helps...
100 heterogeneous servers, 10 dispatchers



22

Randomness further helps...
I 100 homogeneous servers, 10 dispatchers
I update probability is small p̃ = 0.01



23

Recall our motivating questions

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

Answer: For LED, we have
I each dispatcher totally works independently
I immediate dispatching, i.e., no waiting for update
I simple and fast implementations, e.g., min-heap



23

Recall our motivating questions

2. Question: Can each dispatcher work independently with simple
implementations?

I Without communication across dispatchers

Answer: For LED, we have
I each dispatcher totally works independently
I immediate dispatching, i.e., no waiting for update
I simple and fast implementations, e.g., min-heap



24

Recall our motivating questions

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

Answer: For LED, we have
I the sampling and reporting probabilities can be arbitrarily small
I of course, for practical performance, these parameters can be tuned

to trade-off between messages and performance



24

Recall our motivating questions

3. Question: How much communication between dispatchers and servers?

I Minimize the messages between dispatchers and servers

Answer: For LED, we have
I the sampling and reporting probabilities can be arbitrarily small
I of course, for practical performance, these parameters can be tuned

to trade-off between messages and performance



25

Recall our motivating questions

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?

Answer: For LED, we have
I throughput optimality
I delay optimality in heavy traffic



25

Recall our motivating questions

4. Question: Can we say something about performance guarantee?

I Stability? or even delay?

Answer: For LED, we have
I throughput optimality
I delay optimality in heavy traffic



26

Main ideas behind proofs

I The main techniques are based on drift-based [Eryilmaz and

Srikant’12])

I In particular, we utilize the sufficient conditions for throughput and
heavy-traffic optimality in [Zhou et al’17], illustrated as follows

I Throughput optimality needs

positive drift , obtained via

T∑
t=1

E [〈Q,A− S〉 | Q] ≈ −ε ‖Q‖

I Heavy-traffic optimality needs

positive drift , obtained via

T∑
t=1

E [〈Q⊥,A− S〉 | Q] ≈ −δ ‖Q⊥‖



27

Main ideas behind proofs

Three additional challenges arise in our settings...

1. A more general dispatching condition (i.e., δ-tilted sum condition)
I it exists even when the queue lengths are accurate
I we draw inspirations from [Hurtado-Lange and Maguluri’ 20]) to

have a nice bound on the inner product between Q and A

2. Outdated queue lengths information
I our strategy is to do a decomposition
I first, establish necessary drifts via dispatching strategy, assuming the

queue lengths are accurate
I second, bounding the error via update condition

3. System state includes local estimates
I hence, for throughput optimality, they should also be bounded



28

Conclusion...

The LED combined with sufficient conditions give affirmative answers to
all key questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beats

others in performance?

Answer: LED could be one solution due to its intrinsic randomness

2. Question: Can each dispatcher work independently with simple

implementations?

Answer: LED achieve independence, easy implementations

3. Question: How much communication between dispatchers and servers?

Answer: LED, has the flexibility to tune the probability p̃

4. Question: Can we say something about performance guarantee?

Answer: LED, can be throughput optimal and delay optimal in
heavy traffic



29

Future Works

There are several interesting directions for LED...

1. Beyond the traditional heavy-traffic regime?
I As pointed out by [Zhou et al’ 18]), heavy-traffic delay optimal is a

coarse metric in certain sense
I How about waiting probability in large-system regimes?

2. How about continuous-time systems?

3. How about LED on graphs?
I each node can serve a job or dispatches to neighbors
I each node keeps local estimates of its neighbors
I purely based on local memory to dispatch
I infrequent update via communications between nodes



30

Thank you!
Q & A



31

Throughput optimality...

1. We consider the Lyapunov function

W (Z (t)) = ‖Q(t)‖2 +
∑M

m=1

∥∥∥Q(t)− Q̃m(t)
∥∥∥

1

2. Let Xm
n (t) , |Qn(t)− Q̃m

n (t)|, the drift is

D(Z (t0)) = DQ(t0) +
M∑

m=1

N∑
n=1

DXm
n

(t0) (2)

where

DQ(t0) , E
[
‖Q(t0 + T )‖2 − ‖Q(t0)‖2 | Z (t0)

]
DXm

n
(t0) , E [Xm

n (t0 + T )− Xm
n (t0) | Z (t0)]

3. DXm
n

(t0) ≤ −pXm
n (t) + 2TµΣ



32

Throughput optimality (Cont’d)

4. Turn to DQ(t0) , E
[
‖Q(t0 + T )‖2 − ‖Q(t0)‖2 | Z (t0)

]
≈∑

E [〈Q,A− S〉 | Z (t0)] + K

5. We can decompose the first term into (βm
n (t) := Pm

n (t)− µn/µΣ)

RHS ≈
t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Qn(t)− Q̃m

n (t)
)
βm
n (t)λm | Z

]
︸ ︷︷ ︸

T1

+
t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

Q̃m
n (t)βm

n (t)λm | Z

]
︸ ︷︷ ︸

T2

−εµmin

µΣ
‖Q(t0)‖1 .

6. For T1, by update condition, we have a constant bound on it



33

Throughput optimality (Cont’d)

7. Turn to T2 =
∑t0+T−1

t=t0
E
[∑N

n=1

∑M
m=1 Q̃

m
n (t)βm

n (t)λm | Z
]

8. It is equal to
∑t0+T−1

t=t0
E
[∑N

n=1

∑M
m=1 Q̃

m
σt(n)(t)∆m

n (t)λm | Z
]

9. The green term can be written as

M∑
m=1

(
Q̃m
σt(1)(t)

N∑
n=1

∆m
n (t)

)
(3)

+
M∑

m=1

(
N∑

k=2

(
N∑

n=k

∆m
n (t)

)
(Q̃m

σt(k)(t)− Q̃m
σt(k−1)(t))

)
(4)

10. (3) is zero as
∑N

n=1 ∆m
n (t) = 0

11. (4) less than zero since
∑N

n=k ∆m
n (t) ≤ −δ by δ-tilted sum condition



34

Heavy-traffic delay optimality...
1. We wish to establish

∑t0+T−1
t=t0

E [〈Q⊥,A− S〉 | Z ] ≈ −δ′ ‖Q⊥‖, δ′
independent of ε

2. The key term
∑t0+T−1

t=t0
E [〈Q⊥,A〉 | Z ] can be written as

t0+T−1∑
t=t0

E

[
N∑

n=1

Q⊥,n(t)
M∑

m=1

βm
n (t)λm | Z

]

=
t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Q̃m

n (t)− Q̄m(t)
)
βm
n (t)λm | Z

]
(5)

+
t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Qn(t)− Q̃m

n (t)
)
βm
n (t)λm | Z

]
(6)

+
t0+T−1∑
t=t0

E

[
N∑

n=1

M∑
m=1

(
Q̄m(t)− Qavg(t)

)
βm
n (t)λm | Z

]
. (7)

where Q̄m(t) := 1
N

∑
n Q̃

m
n (t) and Qavg := 1

N

∑
n Qn(t)

3. By updating condition, (6) and (7) both can be upper bounded
(properly chosen T )



35

Heavy-traffic delay optimality (Cont’d)

4. Turn to the green term, it can be written as

(5) =
t0+T−1∑
t=t0

E

[
M∑

m=1

N∑
n=1

Q̃m
σt(n)(t)∆m

n (t)λm | Z

]

5. Follow the same decompositions as in (3) and (4), we have

(5) ≤ −δ
t0+T−1∑
t=t0

E

[
M∑

m=1

N∑
n=1

Q̃m
max(t)− Q̃m

min(t)λm | Z

]

6. By a careful sample-path analysis, we have for some constant K

(5) ≤ −δf (p)λmin (Qm
max(t0)− Qmin(t0)) + K

≤ −δ′ ‖Q⊥(t0)‖+ K


	Load Balancing (submitted to ACM Sigmetrics' 21)
	Basic Setup
	Conclusion


