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Load Balancing...
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The Building Block...
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Key features:
» Multiple dispatchers
» Heterogeneous servers



Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?
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Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?
> Without communication across dispatchers
3. Question: How much communication between dispatchers and servers?
> Minimize the messages between dispatchers and servers
4. Question: Can we say something about performance guarantee?
> Stability? or even delay?




Our Proposed Design Framework: LED

The Local-Estimation-Driven (LED) framework...
1. Memory: Each dispatcher has a local memory storing its own
estimates of each server's queue length (often outdated)
2. Dispatching: the dispatching decision at each dispatcher is made
purely based on local memory

3. Updating: the local memory is updated with the true queue length
via messages between dispatchers and servers



Our Proposed Design Framework: LED

The Local-Estimation-Driven (LED) framework...

1. Memory: Each dispatcher has a local memory storing its own
estimates of each server's queue length (often outdated)

2. Dispatching: the dispatching decision at each dispatcher is made
purely based on local memory

3. Updating: the local memory is updated with the true queue length
via messages between dispatchers and servers

Key contributions...

1. Sufficient conditions on dispatching and updating strategies:
throughput optimality and delay optimality in heavy traffic

2. Shed light on recently proposed open problem on LB with delayed
information [David Lipshutz'19]



One Concrete Example...
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Memory: Each dispatcher keeps its own local estimates (often
outdated)...

» Dispatcher A ‘believes’ that: server 1 with queue length 5, server 2
with 0, and server 3 with 1

» Dispatcher B ‘believes’ that: server 1 with queue length 4, server 2
with 2, and server 3 with 1



One Concrete Example...
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Dispatching strategy: Local-Join-Shortest-Queue (L-JSQ)

» each dispatcher independently routes new arrivals to the server with
the shortest local estimates

> e.g., Dispatcher A routes to server 2, Dispatcher B routes to server 3



One Concrete Example...
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Updating strategy: Push-based update via sampling

» each dispatcher independently randomly samples d servers with

probability p

» update its corresponding local estimates with the true queue lengths



Related Works...

1. LB in multiple dispatchers:
> JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable
in general for fixed number of heterogeneous servers [Zhou et al’ 17]
> Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in
the large-system regime; assume homogeneous loads across
dispatchers
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Related Works...

1. LB in multiple dispatchers:
> JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable
in general for fixed number of heterogeneous servers [Zhou et al’ 17]
> Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in
the large-system regime; assume homogeneous loads across
dispatchers
2. LB with local memory:
> Power-of-d in [Anselmi and Dufour’ 18], JSQ in [van der Boor," 19],
a class of policies in [Gamarnik’ 20]
> All of them consider a single dispatcher
3. Most related to ours is the recent work [Vargaftik et al’ 20]

> They only consider one particular dispatching strategy, i.e.,
Local-JSQ.
> They only investigate stability



Model...
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» M dispatchers and N servers in discrete-time.
> Arrival: total number of arriving tasks As(t) with rate Ay, general
distribution !
> As(t) integer-valued i.i,d across time-slots
> As(t) = SV A™(t), A™(t) arrivals at dispatcher m
> assume P(A™(t) >0) > po >0, V(m,t)e M xN,
» Service: average number of tasks can be served at server k is ju,
general distribution.
> Sn(t) is integer-valued, i.i.d across time and independent of arrival
and queue lengths
> Memory: Q(t)) = (Q'(t), ..., QF(%))
» System states: Z(t) = (Q(t), {Q(t))),...,QM(t)})

Lwith all moments bounded by absolute constants
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Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic... Define € :=>" u, — As

Definition (Throughput Optimality)

A LB policy is throughput optimal if the system is positive recurrent
under any € > 0 and all the moments of ||6(6)|| are finite

Note: this definition is stronger than simple stability

Definition (Heavy-traffic Delay Optimality)
A LB policy is said to be heavy-traffic delay optimal in steady-state if the

steady-state queue length vector 6(6) satisfies

||m eE lz Q( ] = lelf(; E[q],

where E [§€] is the mean queue length in resource-pooling system.
Resource-pooling system: pool all the service into one super single server



Dispatching Preference...

» Fix a dispatcher m, let o;(:) be a permutation of (1,2,..., N) that
satisfies

531(1)(” < 65:(2)(1“) <... = 63:(N)(t)'

» P™(t) : probability of routing to server n at dispatcher m in
time-slot t (again, based on local estimates)

» AM(t) : preference of the n-th shortest local estimate at dispatcher
m, given by

AR () = Pl (1) — 522 ]




Dispatching Preference...

» Fix a dispatcher m, let o;(:) be a permutation of (1,2,..., N) that
satisfies

531(1)(” < 6('::(2)(t) <... = 6<,;Z(N)(t)'

» P™(t) : probability of routing to server n at dispatcher m in
time-slot t (again, based on local estimates)

» AM(t) : preference of the n-th shortest local estimate at dispatcher
m, given by

A7) = Pon (1) — 550

» A7(t) > 0 means that policy has stronger preference of n-th shortest
local estimates compared to (weighted) random routing

» Note that YN  AT(t) =0

> Key: how to allocate the zero-sum?



O-tilted Sum Condition

AT(t) = Po)(1) — 552

Definition '

Fix a dispatcher m, forall 1 <j < N —1, Y/ | A"(t) > § for some
constant § > 0 at each time-slot t.

Intuitions: for any first k (k < N) shortest local estimates, it has at least
é total preference



O-tilted Sum Condition

AT(t) = Pgi, (1) — 2

Definition ,
Fix a dispatcher m, forall 1 <j < N —1, Y/ | A"(t) > § for some
constant § > 0 at each time-slot t.
Intuitions: for any first k (k < N) shortest local estimates, it has at least
é total preference _
Examples: suppose all p, are equal and Q™(t)) = (5,0, 1)
» J-tilted Sum Condition satisfied with all P™(t) s.t. for some 6 >0
> PP(t) > 6+ 1/3, PP(t) + PI(t) > 0 +2/3, and 3" P7(t) = 1
Implications:
> this condition also generalizes previous definition in [Zhou et al’
17,18]

> as a result, it allows us to establish new results (e.g., L-Pod),
discussed later



Main Results

We have the following sufficient condition (informal) for throughput
optimality...

Define: Z[(t) indicates server n's true queue length is updated at
dispatcher m

Theorem
Consider an LED policy if
» dispatching strategy satisfies J-tilted sum condition for some § > 0

> updating strategy satisfies that E[Z(t) | Z(t)] > p for any
Z(t), m,n and some p > 0

Then, it is throughput optimal

Remark:

» This directly generalizes LSQ policy in [Vargaftik et al’ 20] in terms of
stability
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Consider an LED policy if
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positive constant §

> updating strategy satisfies that E [Z["(t) | Z(t)] > p > 0 for any
Z(t), m, n independent of previous updates;
» both § and p are independent of €

Then, it is heavy-traffic delay optimal



Main Results
We have the following sufficient condition (informal) for heavy-traffic
delay optimality...
Theorem
Consider an LED policy if

» dispatching strategy satisfies d-tilted sum condition for some strictly
positive constant §

> updating strategy satisfies that E [Z["(t) | Z(t)] > p > 0 for any
Z(t), m, n independent of previous updates;

» both § and p are independent of €
Then, it is heavy-traffic delay optimal
Remark:

» This directly implies a large class of LED policies are heavy-traffic
delay optimal, including the specific one LSQ in [Vargaftik et al’ 20]

» This also sheds light on heavy-traffic delay optimality in delayed
queue length information, raised in [David Lipshutz'19]

» Moreover, the single dispatcher with accurate information is just a
special case of ours



Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20])
» choose i* € argmin,{Q."}
» AT(t) =1 — po,1)/px > 0 and all others are less than 0
> It can be easily seen that J-tilted sum condition is satisfied
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Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20)

» choose i* € argmin,{Q."}
» AT(t) =1 — po,1)/px > 0 and all others are less than 0
> |t can be easily seen that J-tilted sum condition is satisfied
2. L-JBA: Local-Join-Below-Average
> Let Q7(t) = 5 >, Qr(t) and A= {n: Q(t) < Q"(t)}
> Then, for each i € A, P/"(t) = i/ Y, c 4 ttn, and for i ¢ A,
P™(t) = 0.
> it also satisfies the condition, although it needs the information on u

3. L-Pod: Local-Power-of-d

> randomly samples d servers, join the one with the shortest local
estimates

> it turns out that even with heterogeneous servers, L-Pod can still
satisfy J-tilted sum as long as the services rates meet a certain
condition



More on L-Pod

Proposition
Suppose the service rate vector p € RQ’ satisfies

J N—j
Zn:luln]+5gl_(lz\1/)
K (a)
for some constant 6 > 0, in which p, is the n-th largest service rate.
Then, L-Pod satisfies the §-tilted sum condition.



More on L-Pod

Proposition
Suppose the service rate vector p € RQ’ satisfies

j N=j
Mﬂggl_(d) VI<j<N-1, (1)
e ™) !
d

for some constant 6 > 0, in which p, is the n-th largest service rate.
Then, L-Pod satisfies the §-tilted sum condition.

Remark:

> For the single dispatcher with accurate queue length information
(which is a special case of ours), [Hurtado-Lange and Maguluri’ 20])
derived similar conditions

» If d =1, the only possible u and § are u, = p for all n.and § =0
» If d =N, then all 4 € Rﬂ satisfies (1) with § = pmin/ps > 0
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> e.g., at the end of each time-slot, w.p. p > 0 to randomly sample d
queues and update the local estimates with the true lengths
» thus, E[Z;'(t) | Z(t)] > p > 0 is satisfied with p = pd/N



Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based
1. Push-based: each dispatcher takes the initiative to sample servers
> e.g., at the end of each time-slot, w.p. p > 0 to randomly sample d
queues and update the local estimates with the true lengths
» thus, E[Z;'(t) | Z(t)] > p > 0 is satisfied with p = pd/N
2. Pull-based: each server takes the initiative to sample dispatchers
> e.g., at the end of each time-slot, if server n finishes one or more
tasks, it randomly samples one dispatcher
> if Q, =0, it reports w.p. 1
> if Q, >0, it reports w.p. p >0
> it has been verified in [Vargaftik et al' 20]), this satisfies
E[Z7(t) | Z(t)] > p > 0O for arbitrarily small p >0
Of course, there are many more...



Recall our motivating questions

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly
» Thus, how can we avoid this?

Answer: LED could be one solution due to its intrinsic randomness




Inaccurate information helps...

100 heterogeneous servers, 10 dispatchers

~J
o

——JSQ
-»-L-JSQ-Pull
-#-L-JSQ-Push

[=)]
o

©

o

w -+ L-JBA-Pull

0] -+ L-JBA-Push

£50|-0-J1Q 7
= —o- Power-of-2 i
[0} r,'l
E40 , il ¥
; [ /J-'l :
E’ 305 | I", 7
o | I L0
a [ R
220} | A
— I 4’-’ - H - ,.l!>
c B R -t gDty /
1o gt pastt el P
S - A =Lt SRS b "

0 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load (p)



Randomness further helps...

» 100 homogeneous servers, 10 dispatchers
» update probability is small p = 0.01
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Recall our motivating questions

2. Question: Can each dispatcher work independently with simple
implementations?




Recall our motivating questions

2. Question: Can each dispatcher work independently with simple
implementations?
» Without communication across dispatchers
Answer: For LED, we have
> each dispatcher totally works independently
> immediate dispatching, i.e., no waiting for update
> simple and fast implementations, e.g., min-heap
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3. Question: How much communication between dispatchers and servers?




Recall our motivating questions

3. Question: How much communication between dispatchers and servers?
> Minimize the messages between dispatchers and servers
Answer: For LED, we have

> the sampling and reporting probabilities can be arbitrarily small
» of course, for practical performance, these parameters can be tuned
to trade-off between messages and performance
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4. Question: Can we say something about performance guarantee?




Recall our motivating questions

4. Question: Can we say something about performance guarantee?
> Stability? or even delay?
Answer: For LED, we have
> throughput optimality
> delay optimality in heavy traffic




Main ideas behind proofs

» The main techniques are based on drift-based [Eryilmaz and
Srikant'12])

» In particular, we utilize the sufficient conditions for throughput and
heavy-traffic optimality in [Zhou et al'17], illustrated as follows

» Throughput optimality needs

ositive drift , obtained via
@ Q=@ P
K > E[Q,A-S)|Q]~ —€|Q]
t=1

. » Heavy-traffic optimality needs

positive drift "4, obtained via

& T
> E[QL,A-S)|Ql~ —5]Q.]

t=1



Main ideas behind proofs

Three additional challenges arise in our settings...
1. A more general dispatching condition (i.e., -tilted sum condition)
> it exists even when the queue lengths are accurate
> we draw inspirations from [Hurtado-Lange and Maguluri’ 20]) to
have a nice bound on the inner product between Q and A
2. Outdated queue lengths information
> our strategy is to do a decomposition
> first, establish necessary drifts via dispatching strategy, assuming the
queue lengths are accurate
» second, bounding the error via update condition
3. System state includes local estimates
> hence, for throughput optimality, they should also be bounded



Conclusion...

The LED combined with sufficient conditions give affirmative answers to
all key questions...
1. Question: With multiple dispatchers, does Join-Shortest-Queue still beats
others in performance?
Answer: LED could be one solution due to its intrinsic randomness
2. Question: Can each dispatcher work independently with simple
implementations?
Answer: LED achieve independence, easy implementations
3. Question: How much communication between dispatchers and servers?
Answer: LED, has the flexibility to tune the probability
4. Question: Can we say something about performance guarantee?
Answer: LED, can be throughput optimal and delay optimal in
heavy traffic



Future Works

There are several interesting directions for LED...
1. Beyond the traditional heavy-traffic regime?

> As pointed out by [Zhou et al’ 18]), heavy-traffic delay optimal is a
coarse metric in certain sense
» How about waiting probability in large-system regimes?

2. How about continuous-time systems?

3. How about LED on graphs?

each node can serve a job or dispatches to neighbors
each node keeps local estimates of its neighbors
purely based on local memory to dispatch

infrequent update via communications between nodes

vvy vy



Thank you!
Q&A



Throughput optimality...

1. We consider the Lyapunov function

W(Z(1) = 1Q(e)I* + Xy | Q(e) - Q7(e)|
2. Let X™(t) 2 |Qn(t) — Q™(t)], the drift is
M N
D(Z(t0)) = Dolto) + _ 3 Dxp(to)
m=1 n=1
where
Do(to) 2 E [[Qto + T)I* = 1Q(to)I* | Z(t0)]
Dxp(to) £ E[X7(to + T) — X' (ko) | Z(to)]

3. Dxp(to) < —pX;'(t) +2T s



Throughput optimality (Cont'd)

4. Tumn to Do(to) = E [llQ(to + T)II” = 11Q(t) | | Z(tO)] ~
SE[Q,A-S)| Z(t)] + K
5. We can decompose the first term into (87(t) := PT(t) — wun/ps)

to+T—1 [N M
RHS ~ > |33 (Qult) = Q(8)) B(0)Am | Z
t=ty Ln=1 m=1
T
two+T—1 [N M i
M1 9D SACEACIME RIS
t=to Ln=1 m=1

T2

6. For 71, by update condition, we have a constant bound on it



Throughput optimality (Cont'd)

7. Tum to To = SV E [0 S0 Q087 (A | 2]

8. It is equal to YOO 'R [2’”":1 S QT (AT (A | z}

9. The green term can be written as

£ (a0 070)

m=1

+y (Z (ZM ) Qo (t )—52(“)@))) (4)

m=1 \k=2

10. (3) is zero as . A™(t) = 0
11. (4) less than zero since ZLV:,( AM(t) < —§ by 4-tilted sum condition



Heavy-traffic delay optimality...

1. We wish to establish ZtﬁT "E[(QL,A=S)|Z]~—¢(QL|, &
independent of ¢

2. The key term ZtOJ“T "E[(QL,A) | Z] can be written as

to+T—1 N M
S B Qua0)Y (0| Z

=Y B[S (A0 - 0"0) e 2| (9)
to+T—1 N M

RIS (@) - Q) sram 2| (6)
S

+ Y B (QM() - Qual®) B 1 Z| . (D)

where Qm( t) = Zn Q,T( ) and Qavg == N Z Qn(t)
3. By updating condltlon (6) and (7) both can be upper bounded
(properly chosen T)



Heavy-traffic delay optimality (Cont'd)

4. Turn to the green term, it can be written as

to+T—1 M N
D B (AT | Z
t=toy m=1 n=1

5. Follow the same decompositions as in (3) and (4), we have

to+T—1
5) S _6 Z Z Z Qmax er::ln(t))‘m ‘ Z
t=ty m=1 n=1

6. By a careful sample-path analysis, we have for some constant K

(5) < —=3f(P)Amin (Qax(to) — Qmin(to)) + K
< =0'1QL(to)[| + K
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