Asymptotically Optimal Load Balancing in
Large-scale Heterogeneous Systems with Multiple
Dispatchers

Xingyu Zhou

THE OHIO STATE UNIVERSITY

INFORMS Annual Meeting'20

Joint work with...

Ness Shroff, OSU Adam Wierman, Caltech

Load Balancing...

o <
E
ECMP _[: g*

L4LB L7LB —>

B
—
—>
L4LB s >
I
® 1

ECMP _I:: @__)

L4LB L7LB >

The Building Block...

|

Eul
— B
— B
_>EMN

Key features:
» Multiple dispatchers
» Heterogeneous servers

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?
> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?
2. Question: Can each dispatcher work independently with simple
implementations?

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

> Without communication across dispatchers

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

> Without communication across dispatchers

3. Question: How much communication between dispatchers and servers?

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

> Without communication across dispatchers
3. Question: How much communication between dispatchers and servers?
> Minimize the messages between dispatchers and servers

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?

> Without communication across dispatchers
3. Question: How much communication between dispatchers and servers?
> Minimize the messages between dispatchers and servers

4. Question: Can we say something about performance guarantee?

Motivating Questions...

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly [I. Owen Garrett
of NGINX]
» Thus, how can we avoid this?

2. Question: Can each dispatcher work independently with simple
implementations?
> Without communication across dispatchers
3. Question: How much communication between dispatchers and servers?
> Minimize the messages between dispatchers and servers
4. Question: Can we say something about performance guarantee?
> Stability? or even delay?

Our Proposed Design Framework: LED

The Local-Estimation-Driven (LED) framework...
1. Memory: Each dispatcher has a local memory storing its own
estimates of each server's queue length (often outdated)
2. Dispatching: the dispatching decision at each dispatcher is made
purely based on local memory

3. Updating: the local memory is updated with the true queue length
via messages between dispatchers and servers

Our Proposed Design Framework: LED

The Local-Estimation-Driven (LED) framework...

1. Memory: Each dispatcher has a local memory storing its own
estimates of each server's queue length (often outdated)

2. Dispatching: the dispatching decision at each dispatcher is made
purely based on local memory

3. Updating: the local memory is updated with the true queue length
via messages between dispatchers and servers

Key contributions...

1. Sufficient conditions on dispatching and updating strategies:
throughput optimality and delay optimality in heavy traffic

2. Shed light on recently proposed open problem on LB with delayed
information [David Lipshutz'19]

One Concrete Example...

)4 0og| = »

D%Mz

nol = e

Memory: Each dispatcher keeps its own local estimates (often
outdated)...

» Dispatcher A ‘believes’ that: server 1 with queue length 5, server 2
with 0, and server 3 with 1

» Dispatcher B ‘believes’ that: server 1 with queue length 4, server 2
with 2, and server 3 with 1

One Concrete Example...

— @4 ooo| = m
GTolil —

. ®:

THEE

II] %NQ

Dispatching strategy: Local-Join-Shortest-Queue (L-JSQ)

» each dispatcher independently routes new arrivals to the server with
the shortest local estimates

> e.g., Dispatcher A routes to server 2, Dispatcher B routes to server 3

One Concrete Example...

— @4 goo| = m
3]0 1
II] %M
—&B T
£ e T

Updating strategy: Push-based update via sampling

» each dispatcher independently randomly samples d servers with

probability p

» update its corresponding local estimates with the true queue lengths

Related Works...

1. LB in multiple dispatchers:
> JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable
in general for fixed number of heterogeneous servers [Zhou et al’ 17]
> Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in
the large-system regime; assume homogeneous loads across
dispatchers

Related Works...

1. LB in multiple dispatchers:
> JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable
in general for fixed number of heterogeneous servers [Zhou et al’ 17]
> Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in
the large-system regime; assume homogeneous loads across
dispatchers
2. LB with local memory:
> Power-of-d in [Anselmi and Dufour’ 18], JSQ in [van der Boor," 19],
a class of policies in [Gamarnik’ 20]
> All of them consider a single dispatcher

Related Works...

1. LB in multiple dispatchers:
> JIQ in [Lu et al’ 11]: consider homogeneous servers; JIQ is unstable
in general for fixed number of heterogeneous servers [Zhou et al’ 17]
> Pull-based algorithm in [Stolyar’ 17]: heterogeneous server pools in
the large-system regime; assume homogeneous loads across
dispatchers
2. LB with local memory:
> Power-of-d in [Anselmi and Dufour’ 18], JSQ in [van der Boor," 19],
a class of policies in [Gamarnik’ 20]
> All of them consider a single dispatcher
3. Most related to ours is the recent work [Vargaftik et al’ 20]

> They only consider one particular dispatching strategy, i.e.,
Local-JSQ.
> They only investigate stability

Model...
I—@a _ 000)Em
Islofi1]
Dalw

1—@s
LR

» M dispatchers and N servers in discrete-time.
> Arrival: total number of arriving tasks As(t) with rate Ay, general
distribution !
> As(t) integer-valued i.i,d across time-slots
> As(t) = SV A™(t), A™(t) arrivals at dispatcher m
> assume P(A™(t) >0) > po >0, V(m,t)e M xN,
» Service: average number of tasks can be served at server k is ju,
general distribution.
> Sn(t) is integer-valued, i.i.d across time and independent of arrival
and queue lengths
> Memory: Q(t)) = (Q'(t), ..., QF(%))
» System states: Z(t) = (Q(t), {Q(t))),...,QM(t)})

Lwith all moments bounded by absolute constants

Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic...

Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic... Define € :=>" u, — As

Definition (Throughput Optimality)

A LB policy is throughput optimal if the system is positive recurrent
under any € > 0 and all the moments of ||6(6)|| are finite

Note: this definition is stronger than simple stability

Metrics...

In this paper, we consider both throughput optimality and delay
optimality in heavy traffic... Define € :=>" u, — As

Definition (Throughput Optimality)

A LB policy is throughput optimal if the system is positive recurrent
under any € > 0 and all the moments of ||6(6)|| are finite

Note: this definition is stronger than simple stability

Definition (Heavy-traffic Delay Optimality)
A LB policy is said to be heavy-traffic delay optimal in steady-state if the

steady-state queue length vector 6(6) satisfies

||m eE lz Q(] = lelf(; E[q],

where E [§€] is the mean queue length in resource-pooling system.
Resource-pooling system: pool all the service into one super single server

Dispatching Preference...

» Fix a dispatcher m, let o;(:) be a permutation of (1,2,..., N) that
satisfies

531(1)(” < 65:(2)(1“) <... = 63:(N)(t)'

» P™(t) : probability of routing to server n at dispatcher m in
time-slot t (again, based on local estimates)

» AM(t) : preference of the n-th shortest local estimate at dispatcher
m, given by

AR () = Pl (1) — 522]

Dispatching Preference...

» Fix a dispatcher m, let o;(:) be a permutation of (1,2,..., N) that
satisfies

531(1)(” < 6('::(2)(t) <... = 6<,;Z(N)(t)'

» P™(t) : probability of routing to server n at dispatcher m in
time-slot t (again, based on local estimates)

» AM(t) : preference of the n-th shortest local estimate at dispatcher
m, given by

A7) = Pon (1) — 550

» A7(t) > 0 means that policy has stronger preference of n-th shortest
local estimates compared to (weighted) random routing

» Note that YN AT(t) =0

> Key: how to allocate the zero-sum?

O-tilted Sum Condition

AT(t) = Po)(1) — 552

Definition '

Fix a dispatcher m, forall 1 <j < N —1, Y/ | A"(t) > § for some
constant § > 0 at each time-slot t.

Intuitions: for any first k (k < N) shortest local estimates, it has at least
é total preference

O-tilted Sum Condition

AT(t) = Pgi, (1) — 2

Definition ,
Fix a dispatcher m, forall 1 <j < N —1, Y/ | A"(t) > § for some
constant § > 0 at each time-slot t.
Intuitions: for any first k (k < N) shortest local estimates, it has at least
é total preference _
Examples: suppose all p, are equal and Q™(t)) = (5,0, 1)
» J-tilted Sum Condition satisfied with all P™(t) s.t. for some 6 >0
> PP(t) > 6+ 1/3, PP(t) + PI(t) > 0 +2/3, and 3" P7(t) = 1
Implications:
> this condition also generalizes previous definition in [Zhou et al’
17,18]

> as a result, it allows us to establish new results (e.g., L-Pod),
discussed later

Main Results

We have the following sufficient condition (informal) for throughput
optimality...

Define: Z[(t) indicates server n's true queue length is updated at
dispatcher m

Theorem
Consider an LED policy if
» dispatching strategy satisfies J-tilted sum condition for some § > 0

> updating strategy satisfies that E[Z(t) | Z(t)] > p for any
Z(t), m,n and some p > 0

Then, it is throughput optimal

Remark:

» This directly generalizes LSQ policy in [Vargaftik et al’ 20] in terms of
stability

Main Results

We have the following sufficient condition (informal) for heavy-traffic
delay optimality...

Theorem
Consider an LED policy if

» dispatching strategy satisfies d-tilted sum condition for some strictly
positive constant §

> updating strategy satisfies that E [Z["(t) | Z(t)] > p > 0 for any
Z(t), m, n independent of previous updates;
» both § and p are independent of €

Then, it is heavy-traffic delay optimal

Main Results
We have the following sufficient condition (informal) for heavy-traffic
delay optimality...
Theorem
Consider an LED policy if

» dispatching strategy satisfies d-tilted sum condition for some strictly
positive constant §

> updating strategy satisfies that E [Z["(t) | Z(t)] > p > 0 for any
Z(t), m, n independent of previous updates;

» both § and p are independent of €
Then, it is heavy-traffic delay optimal
Remark:

» This directly implies a large class of LED policies are heavy-traffic
delay optimal, including the specific one LSQ in [Vargaftik et al’ 20]

» This also sheds light on heavy-traffic delay optimality in delayed
queue length information, raised in [David Lipshutz'19]

» Moreover, the single dispatcher with accurate information is just a
special case of ours

Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20])
» choose i* € argmin,{Q."}
» AT(t) =1 — po,1)/px > 0 and all others are less than 0
> It can be easily seen that J-tilted sum condition is satisfied

Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20)

» choose i* € argmin,{Q."}
» AT(t) =1 — po,1)/px > 0 and all others are less than 0
> It can be easily seen that J-tilted sum condition is satisfied

2. L-JBA: Local-Join-Below-Average
> Let QM(t) = £ >, Qr(t) and A:={n: Q7(t) < Q"(t)}
> Then, for each i € A, P/"(t) = i/ Y, c 4 ttn, and for i ¢ A,
P™(t) = 0.
> it also satisfies the condition, although it needs the information on u

Examples of ‘nice’ dispatching strategies

1. L-JSQ: Local-Join-Shortest-Queue (i.e., the LSQ in [Vargaftik et al’
20)

» choose i* € argmin,{Q."}
» AT(t) =1 — po,1)/px > 0 and all others are less than 0
> |t can be easily seen that J-tilted sum condition is satisfied
2. L-JBA: Local-Join-Below-Average
> Let Q7(t) = 5 >, Qr(t) and A= {n: Q(t) < Q"(t)}
> Then, for each i € A, P/"(t) = i/ Y, c 4 ttn, and for i ¢ A,
P™(t) = 0.
> it also satisfies the condition, although it needs the information on u

3. L-Pod: Local-Power-of-d

> randomly samples d servers, join the one with the shortest local
estimates

> it turns out that even with heterogeneous servers, L-Pod can still
satisfy J-tilted sum as long as the services rates meet a certain
condition

More on L-Pod

Proposition
Suppose the service rate vector p € RQ’ satisfies

J N—j
Zn:luln]+5gl_(lz\1/)
K (a)
for some constant 6 > 0, in which p, is the n-th largest service rate.
Then, L-Pod satisfies the §-tilted sum condition.

More on L-Pod

Proposition
Suppose the service rate vector p € RQ’ satisfies

j N=j
Mﬂggl_(d) VI<j<N-1, (1)
e ™) !
d

for some constant 6 > 0, in which p, is the n-th largest service rate.
Then, L-Pod satisfies the §-tilted sum condition.

Remark:

> For the single dispatcher with accurate queue length information
(which is a special case of ours), [Hurtado-Lange and Maguluri’ 20])
derived similar conditions

» If d =1, the only possible u and § are u, = p for all n.and § =0
» If d =N, then all 4 € Rﬂ satisfies (1) with § = pmin/ps > 0

Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based

Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based
1. Push-based: each dispatcher takes the initiative to sample servers

> e.g., at the end of each time-slot, w.p. p > 0 to randomly sample d
queues and update the local estimates with the true lengths
» thus, E[Z;'(t) | Z(t)] > p > 0 is satisfied with p = pd/N

Examples of ‘nice’ updating strategies

We can generally have two categories: push-based and pull-based
1. Push-based: each dispatcher takes the initiative to sample servers
> e.g., at the end of each time-slot, w.p. p > 0 to randomly sample d
queues and update the local estimates with the true lengths
» thus, E[Z;'(t) | Z(t)] > p > 0 is satisfied with p = pd/N
2. Pull-based: each server takes the initiative to sample dispatchers
> e.g., at the end of each time-slot, if server n finishes one or more
tasks, it randomly samples one dispatcher
> if Q, =0, it reports w.p. 1
> if Q, >0, it reports w.p. p >0
> it has been verified in [Vargaftik et al' 20]), this satisfies
E[Z7(t) | Z(t)] > p > 0O for arbitrarily small p >0
Of course, there are many more...

Recall our motivating questions

1. Question: With multiple dispatchers, does Join-Shortest-Queue still beat
others in performance?

> No, due to herd behavior, it actually behaves poorly
» Thus, how can we avoid this?

Answer: LED could be one solution due to its intrinsic randomness

Inaccurate information helps...

100 heterogeneous servers, 10 dispatchers

~J
o

——JSQ
-»-L-JSQ-Pull
-#-L-JSQ-Push

[=)]
o

©

o

w -+ L-JBA-Pull

0] -+ L-JBA-Push

£50|-0-J1Q 7
= —o- Power-of-2 i
[0} r,'l
E40 , il ¥
; [/J-'l :
E’ 305 | I", 7
o | I L0
a [R
220} | A
— I 4’-’ - H - ,.l!>
c B R -t gDty /
1o gt pastt el P
S - A =Lt SRS b "

0 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load (p)

Randomness further helps...

» 100 homogeneous servers, 10 dispatchers
» update probability is small p = 0.01

1200 -%-L-JSQ-Push ' :
m -+-L-JBA-Push
% 1000 == L-Pod-Push ?
2
= 800+ ‘,"
[0}
E ;
; 600 - gl
o){/ ’/
o 7
2 400 s /
q;’ o
2

T 200 - i pans
[} - ¢
= R T

01 o T TRl e ———F

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Load (p)

Recall our motivating questions

2. Question: Can each dispatcher work independently with simple
implementations?

Recall our motivating questions

2. Question: Can each dispatcher work independently with simple
implementations?
» Without communication across dispatchers
Answer: For LED, we have
> each dispatcher totally works independently
> immediate dispatching, i.e., no waiting for update
> simple and fast implementations, e.g., min-heap

Recall our motivating questions

3. Question: How much communication between dispatchers and servers?

Recall our motivating questions

3. Question: How much communication between dispatchers and servers?
> Minimize the messages between dispatchers and servers
Answer: For LED, we have

> the sampling and reporting probabilities can be arbitrarily small
» of course, for practical performance, these parameters can be tuned
to trade-off between messages and performance

Recall our motivating questions

4. Question: Can we say something about performance guarantee?

Recall our motivating questions

4. Question: Can we say something about performance guarantee?
> Stability? or even delay?
Answer: For LED, we have
> throughput optimality
> delay optimality in heavy traffic

Main ideas behind proofs

» The main techniques are based on drift-based [Eryilmaz and
Srikant'12])

» In particular, we utilize the sufficient conditions for throughput and
heavy-traffic optimality in [Zhou et al'17], illustrated as follows

» Throughput optimality needs

ositive drift , obtained via
@ Q=@ P
K > E[Q,A-S)|Q]~ —€|Q]
t=1

. » Heavy-traffic optimality needs

positive drift "4, obtained via

& T
> E[QL,A-S)|Ql~ —5]Q.]

t=1

Main ideas behind proofs

Three additional challenges arise in our settings...
1. A more general dispatching condition (i.e., -tilted sum condition)
> it exists even when the queue lengths are accurate
> we draw inspirations from [Hurtado-Lange and Maguluri’ 20]) to
have a nice bound on the inner product between Q and A
2. Outdated queue lengths information
> our strategy is to do a decomposition
> first, establish necessary drifts via dispatching strategy, assuming the
queue lengths are accurate
» second, bounding the error via update condition
3. System state includes local estimates
> hence, for throughput optimality, they should also be bounded

Conclusion...

The LED combined with sufficient conditions give affirmative answers to
all key questions...
1. Question: With multiple dispatchers, does Join-Shortest-Queue still beats
others in performance?
Answer: LED could be one solution due to its intrinsic randomness
2. Question: Can each dispatcher work independently with simple
implementations?
Answer: LED achieve independence, easy implementations
3. Question: How much communication between dispatchers and servers?
Answer: LED, has the flexibility to tune the probability
4. Question: Can we say something about performance guarantee?
Answer: LED, can be throughput optimal and delay optimal in
heavy traffic

Future Works

There are several interesting directions for LED...
1. Beyond the traditional heavy-traffic regime?

> As pointed out by [Zhou et al’ 18]), heavy-traffic delay optimal is a
coarse metric in certain sense
» How about waiting probability in large-system regimes?

2. How about continuous-time systems?

3. How about LED on graphs?

each node can serve a job or dispatches to neighbors
each node keeps local estimates of its neighbors
purely based on local memory to dispatch

infrequent update via communications between nodes

vvy vy

Thank you!
Q&A

Throughput optimality...

1. We consider the Lyapunov function

W(Z(1) = 1Q(e)I* + Xy | Q(e) - Q7(e)|
2. Let X™(t) 2 |Qn(t) — Q™(t)], the drift is
M N
D(Z(t0)) = Dolto) + _ 3 Dxp(to)
m=1 n=1
where
Do(to) 2 E [[Qto + T)I* = 1Q(to)I* | Z(t0)]
Dxp(to) £ E[X7(to + T) — X' (ko) | Z(to)]

3. Dxp(to) < —pX;'(t) +2T s

Throughput optimality (Cont'd)

4. Tumn to Do(to) = E [llQ(to + T)II” = 11Q(t) | | Z(tO)] ~
SE[Q,A-S)| Z(t)] + K
5. We can decompose the first term into (87(t) := PT(t) — wun/ps)

to+T—1 [N M
RHS ~ > |33 (Qult) = Q(8)) B(0)Am | Z
t=ty Ln=1 m=1
T
two+T—1 [N M i
M1 9D SACEACIME RIS
t=to Ln=1 m=1

T2

6. For 71, by update condition, we have a constant bound on it

Throughput optimality (Cont'd)

7. Tum to To = SV E [0 S0 Q087 (A | 2]

8. It is equal to YOO 'R [2’”":1 S QT (AT (A | z}

9. The green term can be written as

£ (a0 070)

m=1

+y (Z (ZM) Qo (t)—52(“)@))) (4)

m=1 \k=2

10. (3) is zero as . A™(t) = 0
11. (4) less than zero since ZLV:,(AM(t) < —§ by 4-tilted sum condition

Heavy-traffic delay optimality...

1. We wish to establish ZtﬁT "E[(QL,A=S)|Z]~—¢(QL|, &
independent of ¢

2. The key term ZtOJ“T "E[(QL,A) | Z] can be written as

to+T—1 N M
S B Qua0)Y (0| Z

=Y B[S (A0 - 0"0) e 2| (9)
to+T—1 N M

RIS (@) - Q) sram 2| (6)
S

+ Y B (QM() - Qual®) B 1 Z| . (D)

where Qm(t) = Zn Q,T() and Qavg == N Z Qn(t)
3. By updating condltlon (6) and (7) both can be upper bounded
(properly chosen T)

Heavy-traffic delay optimality (Cont'd)

4. Turn to the green term, it can be written as

to+T—1 M N
D B (AT | Z
t=toy m=1 n=1

5. Follow the same decompositions as in (3) and (4), we have

to+T—1
5) S _6 Z Z Z Qmax er::ln(t))‘m ‘ Z
t=ty m=1 n=1

6. By a careful sample-path analysis, we have for some constant K

(5) < —=3f(P)Amin (Qax(to) — Qmin(to)) + K
< =0'1QL(to)[| + K

	Load Balancing (submitted to ACM Sigmetrics' 21)
	Basic Setup
	Conclusion

