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The cloud is everywhere...
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Load balancing is a key...

I Availability

I Throughput

I Responsiveness

I : a half second increase in loading time drops traffic by 20%.

I : every 0.1s of latency costs them 1% in sales.
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Let’s model it...

I Discrete-time system, i.e, time-slotted.

I Arrival rate at each time slot is λΣ, general distribution .

I Service rate at each server k is µk , general distribution.

I Arrival and service are independent.
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The goal of load balancing:

choose the right server(s) for each request.

What does right mean?

I High throughput

I Low latency

1. dispatching time (arrive at dispatcher – joining a server).
2. response time (joining a server – leaving the server).

I by Little’s law, minimize the mean number of requests in system.
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Which load balancing policy is the best?

Maybe the most intuitive one: Join the Shortest Queue
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Looking back...
Latency = dispatching time + response time (delay).

I 40 years ago...
I Foschini, et. al, proved that JSQ is delay optimal in heavy traffic.
I Initiated by dispatcher (push-based), non-zero dispatching time.
I Often impractical to implement due to high message overhead.

I 25 years ago...
I Frank Kelly, et. al, proposed a threshold type policy JBT.

I Join-Below-Threshold (r): randomly join a server whose queue length
is below r , if any; otherwise, randomly select any one to join.

I Initiated by server (pull-based), zero dispatching time.
I The message overhead is at most 1 per arrival.
I They conjectured that if

r ≥ K log(average number of requests in system)

then JBT is delay optimal in heavy traffic.

I From 1993...
I Logarithmic growth rate of threshold guarantees heavy-traffic delay

optimality in several scheduling settings [Harrison’98], [Williams, et al’01].
I However, it is still open in the load balancing setting.
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Contributions...

We present necessary and sufficient conditions on the threshold for delay
optimality in heavy traffic in load balancing systems.

I Theoretical contributions:
I Resolves the long-standing open problem mentioned before.

I The results are more general compared to Kelly’s original conjecture.
I Provides new insights into heavy-traffic delay optimality.

I The ‘King’ equation.
I Develops new techniques for the analysis of load balancing policies.

I New type of state-space collapse.
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Contributions...

The necessary and sufficient conditions on the threshold have...

I Practical contributions:
I Provides a simple guideline for practical systems, e.g., Netflix Zuul.
I Sheds light on the design of new pull-based algorithms.
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Part I: Background
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Low delay...

I Closed-form formula in classical regime is very difficult.

I Turn to asymptotic regimes for insights.

Load (ρ)
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Large-system regime
(fix ρ, N →∞)
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(N →∞, ρ→ 1)
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Why is the heavy-traffic regime?

“In heavy-traffic regime, the important features of good control policies
are often displayed in the sharpest relief”

— Frank Kelly
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Heavy-traffic Delay Optimality

Definition
It can achieve the lower bound on delay when ε→ 0 (ε =

∑
µn − λΣ),

that is, limε↓0 εE [
∑

Qn] = limε↓0 εE [q] (the queue length is on the order
O(1/ε))

Fact: E [
∑

Qn] ≥ E [q], since one service process is stochastically larger.
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Push VS. Pull
Push algorithm: Join-shortest-queue (JSQ)

I sample each queue length

I join the shortest one

Pros:

I Delay optimal in a stochastic order sense. [Weber’78]

I Heavy-traffic delay optimal. [Foschini and Salz’78], [Eryilmaz and

Srikant’12]

Cons:

I Message overhead is undesriable (2N per arrival).

I Non-zero dispatching delay.
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Push VS. Pull
Push algorithm: Power-of-d (Pod)

I randomly sample the queue lengths of d servers.

I join the shortest one among them.

Pros:

I Double exponential decay in delay tail when N is large.
[Mitzenmacher’96]

I Heavy-traffic delay optimal for homogeneous servers. [Chen and

Ye’12], [Maguluri, et al’14]

I Improved message overhead (2d per arrival)

Cons:

I Non-zero dispatching delay.
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Push VS. Pull
Pull algorithm: Join-idle-queue (JIQ)

I if possible, join an idle queue randomly.
I otherwise, join an arbitrary queue randomly.

It is a pull algorithm since it behaves like the idle server pulls tasks from
the dispatcher.

Pros:

I Better delay performance than Pod with a lower message overhead
(at most 1 per arrival), when traffic is not heavy. [Lu, et al’11],

[Stolyar’15]

I Zero dispatching delay

Cons:

I Delay performance downgrades substantially under heavy traffic.
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Big picture...

I Push algorithms, e.g., JSQ and Pod

I delay optimal in heavy traffic.

I non-zero dispatching delay. ( by nature of push algorithms)

I high (relatively) message overhead.

I Pull algorithm, e.g., JIQ

I very poor delay in heavy traffic. ( some hope here?)

I zero dispatching delay.

I low message overhead.
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Can we design a heavy-traffic delay optimal pull-based policy?

Main idea: A dynamic threshold!

The hope is that:

I instead of only storing idle servers.

I the dispatcher stores servers with queue lengths being less than a
dynamic threshold!
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Part II: Necessary Conditions
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Warm up....

(a) Is JIQ delay optimal in heavy traffic?

(A). Yes (B). No

(b) In the heavy-traffic limit: is the delay under JIQ the same as that
under Random?

(A). Yes (B). No

Both answers are NO!

In fact, in the heavy-traffic limit:

heavy-traffic optimal = JSQ < JIQ < Rand
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The general pull-based policy...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and join the server.

3. otherwise, randomly picks a queue to join.

Remark:

I JIQ is just a special case of JBT(r) with constant r = 1.

I For heterogeneous servers, we can just replace random selection with
selection in proportion to the service rate.
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Geometry of JBT...
The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks an ID and join the
server.

3. otherwise, randomly picks a queue to join.
Q1

Q2

(r, r)

Rl

Ru

Q1

Q2

(r, r)

Rl

Ru

Q ∈ Rl : Random (full memory) Q ∈ Ru : Random (empty memory)
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Geometry of JBT...

The JBT(r) (Join-Below-Threshold(r)) algorithm:

1. the memory at the dispatcher stores IDs of servers with queue
lengths being less than r . (mechanism will be introduced later)

2. if the memory is non-empty, randomly picks a ID and join the server.

3. otherwise, randomly picks a queue to join.

Q1

Q2

(r, r)

Rl

Ru

Q1

Q2

(r, r)

Rl

Ru

Q /∈ Rl ∪Ru : shorter queues are preferred.
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Grow, but not too fast...

Theorem (Necessary Conditions)
Consider the JBT(r) policy.

1. For any constant threshold r , we have the following average delay
ordering in heavy traffic:

DJSQ < DJBT (r) < DRand

2. For r = Ω((1/ε)1+α) for any α > 0, we have that in heavy traffic:

DJSQ < DJBT (r) = DRand
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Before the proof, any intuitions?
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The ‘King’ equation...

The sufficient and necessary condition for HT-optimality:

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.

I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.
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]
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where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.
I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

“Probability theory is nothing but common sense reduced to calculation.”

— Pierre Laplace
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⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

(r, r)

(r, r)

(b) r is a constant in [1,1)(a) r = ⌦((1/✏)1+↵),↵ > 0

Completely degenerate to random.

DJSQ < DJBT (r) = DRand

Q ∈ Rl : Random (full memory)

⇥(1/✏) Q1

Q2

⇥(1/✏) Q1

Q2

(r, r)

(r, r)

(b) r is a constant in [1,1)(a) r = ⌦((1/✏)1+↵),↵ > 0

Always has ‘nice’ things happen.

DJSQ < DJBT (r) < DRand

Q /∈ Rl ∪Ru : ‘nice’ things.
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The Universal Equality...

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= T (ε)

1 + T (ε)
2 − T (ε)

3

where

T (ε)
1 , 2

N∑
i=1

N∑
j>i

E
[(

Q
(ε)

i − Q
(ε)

j

)(
A

(ε)

i − A
(ε)

j − S
(ε)

i + S
(ε)

j

)]

T (ε)
2 ,

N∑
i=1

N∑
j>i

E
[(

A
(ε)

i − A
(ε)

j − S
(ε)

i + S
(ε)

j

)2
]

T (ε)
3 ,

N∑
i=1

N∑
j>i

E
[(

U
(ε)

i − U
(ε)

j

)2
]

Q
+
, Q(t + 1)

The first unified method to show a policy is NOT optimal.
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Then...how fast should it grow?
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Part III: Sufficient Conditions
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Conjecture time....

Consider the JBT(r) policy with load parameter ε =
∑
µn − λΣ.

Question: Which of the following r value guarantees ‘optimality’?

(A).

(B). r = θ (log(1/ε))

(C). r = θ(log2(1/ε))

(D).

Hint: The average number of tasks is on the order of 1/ε.
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25 years ago...

Conjecture: ‘optimality’ is guaranteed if r ≥ K log(1/ε).
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25 years ago...

Conjecture: ‘optimality’ is guaranteed if r ≥ K log(1/ε).2

2Two-server case and diffusion approximation optimality
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Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.



34

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.



34

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.



34

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.



34

Logarithmic growth is sufficient...

Theorem (Sufficient Conditions)
Consider the JBT(r) policy with threshold r . Suppose r ≥ K log(1/ε)
and r = o(1/ε), for some constant K , then it is heavy-traffic delay
optimal in steady-state.

Remark:

I This holds for any fixed finite number of servers, 2 ≤ N <∞.

I This holds for general arrival and service distributions (with finite
moment bounds).

I The optimality is directly in steady-state.



35

The challenge to prove it...

(a) Diffusion approximations method.

I multi-dimensional Brownian motion is difficult to analyze.

I optimality often only exists in finite time, not steady-state result.

(b) Lyapunov drift-based method.

I standard techniques fail in our case.
I since the state-space collapse is neither a line nor a cone.
I instead, it is even non-convex.

Our methods:

I we use drift-based analysis to establish a new type of state-space
collapse.

I we combine this state-space collapse with Chernoff bound.
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What is state-space collapse?

Informally, it means steady state ‘concentrates’ around a subspace.

I the distance between the steady state and a subspace has bounded
moment upper bounds.

I the subspace could be a line or a cone in previous works.

Q1 = Q2

Q1

Q2
Q1 = Q2

Q1

Q2

⇥(1/✏) ⇥(1/✏)

⇥(1/✏)

⇥(1/✏)
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Why is state-space collapse important?
Recall the ‘King’ equation...

lim
ε↓0

E
[∥∥Q(ε)

(t + 1)
∥∥

1

∥∥U(ε)
(t)
∥∥

1

]
= 0.

where the unused service vector U(t) = max{S(t)−Q(t)− A(t), 0}.
I Note that Qn(t + 1)Un(t) = 0 for all n and t.

IMPLICATIONS: No server is idle while others with high loads.

Q1 = Q2

Q1

Q2
Q1 = Q2

Q1

Q2

⇥(1/✏) ⇥(1/✏)

⇥(1/✏)

⇥(1/✏)

In heavy traffic (ε→ 0), steady state lies far away from boundary.
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What would be the state-space collapse in our case?
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From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

Drift towards the pink region due to preference of shorter queues.
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From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

Then, ALL the moments of the distance to pink region are bounded!

E
[
eθ
∗dR(r)

(
Q

(ε)
)]
≤ C∗,

where both θ∗ and C∗ are independent of ε.
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From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

E
[
Q

(ε)

2 (t + 1)U
(ε)

1

]
=E

[
Q2(t + 1)U1I

(
Q2(t + 1) ≤ 2r ,Q1(t + 1) = 0

)]
(1)

+ E
[
Q2(t + 1)U1I

(
Q2(t + 1) > 2r ,Q1(t + 1) = 0

)]
(2)
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From drift to Chernoff bound...

Q1

Q2

(r, r)

Q1

Q2

(r, r)

2r(a) (b)

Q1

Q2

(r, r)

(b)

r

E
[
Q

(ε)

2 (t + 1)U
(ε)

1

]
=E

[
Q2(t + 1)U1I

(
Q2(t + 1) ≤ 2r ,Q1(t + 1) = 0

)]
(1)

+ E
[
Q2(t + 1)U1I

(
Q2(t + 1) > 2r ,Q1(t + 1) = 0

)]
(2)

(1) ≤ 2rε, since E
[
U1

]
≤ ε.

(2) ≤ C
1

ε2
P
(
Q2(t + 1) > 2r ,Q1(t + 1) = 0

)
≤ C

1

ε2

1

eθr
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Implementation...

The key requirement: set of servers whose queue lengths are below the
threshold are known at the dispatcher

Definition
JBT(r) is composed of the following components:

I Each server is initialized with an empty queue, and a corresponding
ID in the local memory of the dispatcher.

I Upon new arrivals at the beginning of each time-slot, the dispatcher
checks the available IDs in memory.

I If one or more IDs exist, it removes one uniformly at random, and
sends all the new arrivals to the corresponding server.

I Otherwise, all the new arrivals are dispatched uniformly at random to
one of the servers in the system.

I Each server reports its ID to the dispatcher at the end of each
time-slot if

I its queue length is below the threshold
I AND the dispatcher does not contain its ID (how?)
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How to determine the threshold?

I If we can estimate the traffic load, then we can directly apply the
sufficient condition.

I If not, we can use sampling every T time-slots.

I In particular, randomly sample d queues and take the minimum as
threshold.

I We can prove the following result.

Theorem
For any finite T and d ≥ 1, the policy is throughput and delay optimal in
heavy traffic.
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Then...is the Logarithmic growth rate also necessary?

We conjecture so!
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Conclusion...

Theorem (Necessary Conditions)

I The threshold r should grow with the traffic load.

I But, it can not grow too fast.

I It provides a sharp characterization of JIQ policy.

Theorem (Sufficient Conditions)

I It is sufficient to have a logarithmic growth rate.

I This resolves a long-standing open problem.

I It provides a useful guideline for practical systems.
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Thank you!
Q & A


