Degree of Queue Imbalance: Overcoming the Limitation of Heavy-traffic Delay Optimality in Load Balancing Systems

Xingyu Zhou

THE OHIO STATE UNIVERSITY

Joint work with...

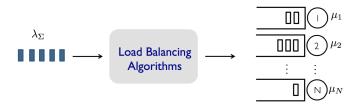
Fei Wu*, OSU (co-primal)

Kannan Srinivasan, OSU

Jian Tan, OSU

Ness Shroff, OSU

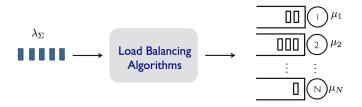
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



The goal of load balancing:

choose the *right* server(s) for each request.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



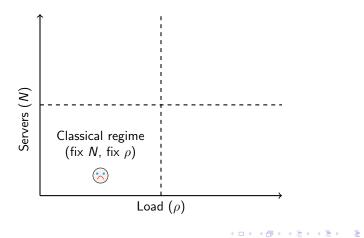
The goal of load balancing:

choose the *right* server(s) for each request.

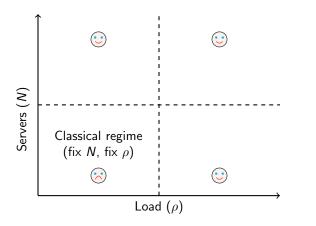
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What does *right* mean?

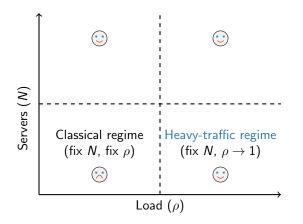
Classical regime is very difficult.



- Classical regime is very difficult.
- ► Turn to asymptotic regimes for insights.

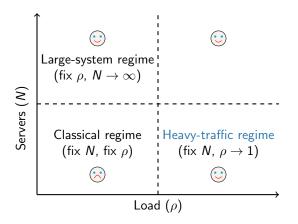


- Classical regime is very difficult.
- Turn to asymptotic regimes for insights.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

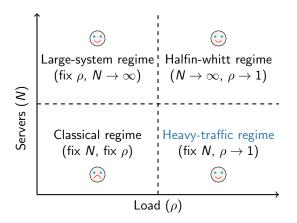
- Classical regime is very difficult.
- ► Turn to asymptotic regimes for insights.



・ロト ・ 雪 ト ・ ヨ ト

э

- Classical regime is very difficult.
- Turn to asymptotic regimes for insights.



イロト 不得 トイヨト イヨト

э

1. Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

(ロ)、(型)、(E)、(E)、 E) の(の)

1. Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

we know 'optimality' exists in heavy-traffic limit.

1. Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- we know 'optimality' exists in heavy-traffic limit.
- but, how much does it tell about moderate load?

- 1. Question: How large can the difference be in the empirical delay for different 'optimal' schemes?
 - we know 'optimality' exists in heavy-traffic limit.
 - but, how much does it tell about moderate load?
 - how far away from just random routing in empirical performance?

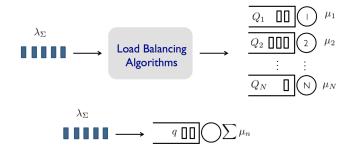
- 1. Question: How large can the difference be in the empirical delay for different 'optimal' schemes?
 - we know 'optimality' exists in heavy-traffic limit.
 - but, how much does it tell about moderate load?
 - how far away from just random routing in empirical performance?

2. Question: Can we characterize the difference and differentiate the policies that are 'optimal'?

Before we start...

Definition (Heavy-traffic Delay Optimal)

It can achieve the lower bound on delay when $\epsilon \to 0$, that is, $\lim_{\epsilon \downarrow 0} \mathbb{E}\left[\sum Q_n\right] = \lim_{\epsilon \downarrow 0} \mathbb{E}\left[q\right]$



Fact: $\mathbb{E}\left[\sum Q_n\right] \geq \mathbb{E}\left[q\right]$, since packet remains in the queue until finished.

Quiz time....

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p, otherwise just uses Random.

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p, otherwise just uses Random.

Question: Which of the following p value guarantees 'optimality'? (A). p = 1 (B). p = 0.5 (C). p = 0.1 (D). p = 0.00001

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p, otherwise just uses Random.

Question: Which of the following p value guarantees 'optimality'? (A). p = 1 (B). p = 0.5 (C). p = 0.1 (D). p = 0.00001

All the choices are correct!

Part I: Limitation of heavy-traffic optimality in load balancing

Main Result

Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

Answer: The empirical delay of 'optimal' policies can range from JSQ \bigcirc to arbitrarily close to Random \bigcirc (p = 0.00001)

Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

Answer: The empirical delay of 'optimal' policies can range from JSQ \bigcirc to arbitrarily close to Random \bigcirc (p = 0.00001)

A very weak condition is enough: in the long-term, the dispatcher favors (even slightly) shorter queues.

Question: How large can the difference be in the empirical delay for different 'optimal' schemes?

Answer: The empirical delay of 'optimal' policies can range from JSQ \bigcirc to arbitrarily close to Random \bigcirc (p = 0.00001)

- A very weak condition is enough: in the long-term, the dispatcher favors (even slightly) shorter queues.
- This condition is called LDPC: Long-term Dispatching Preference Condition.

Dispatching distribution and preference

Let us focus on homogeneous servers first.

The *n*th component of dispatching distribution P(t) is the *probability* of dispatching arrival to the *n*th *shortest* queue.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dispatching distribution and preference

Let us focus on homogeneous servers first.

The *n*th component of dispatching distribution P(t) is the *probability* of dispatching arrival to the *n*th *shortest* queue.

We also define dispatching preference

$$\Delta(t) riangleq \mathbf{P}(t) - \mathbf{P}_{\mathsf{rand}}(t)$$

where $\mathbf{P}_{rand}(t)$ is the dispatching distribution under random routing.

Dispatching distribution and preference

Let us focus on homogeneous servers first.

The *n*th component of dispatching distribution P(t) is the *probability* of dispatching arrival to the *n*th *shortest* queue.

We also define dispatching preference

$$\Delta(t) riangleq \mathbf{P}(t) - \mathbf{P}_{\mathsf{rand}}(t)$$

where $\mathbf{P}_{rand}(t)$ is the dispatching distribution under random routing.

Let random vector $\overline{\Delta}$ denote the dispatching preference in steady-state.

$$\widetilde{\Delta} = \mathbb{E}\left[\overline{\Delta}\right]$$

Let consider a homogeneous case with 3 servers.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let consider a homogeneous case with 3 servers.

(ロ)、(型)、(E)、(E)、 E) の(の)

Random: randomly joins one

•
$$\mathbf{P}_{rand}(t) = (1/3, 1/3, 1/3)$$

•
$$\Delta(t) = \overline{\Delta} = \widetilde{\Delta} = (0, 0, 0)$$

Let consider a homogeneous case with 3 servers.

- Random: randomly joins one
 - $\mathbf{P}_{rand}(t) = (1/3, 1/3, 1/3)$
 - $\Delta(t) = \overline{\Delta} = \widetilde{\Delta} = (0, 0, 0)$
- ▶ JSQ: always join the shortest one

•
$$\mathbf{P}_{JSQ}(t) = (1, 0, 0)$$

•
$$\Delta_{JSQ}(t) = \overline{\Delta} = \widetilde{\Delta} = (2/3, -1/3, -1/3)$$

Let consider a homogeneous case with 3 servers.

- Random: randomly joins one
 - $\mathbf{P}_{rand}(t) = (1/3, 1/3, 1/3)$
 - $\Delta(t) = \overline{\Delta} = \widetilde{\Delta} = (0, 0, 0)$
- JSQ: always join the shortest one

•
$$\mathbf{P}_{JSQ}(t) = (1, 0, 0)$$

•
$$\Delta_{JSQ}(t) = \overline{\Delta} = \widetilde{\Delta} = (2/3, -1/3, -1/3)$$

> Power of 2: randomly picks two and joins the shorter one

•
$$\mathbf{P}_{Po2}(t) = (2/3, 1/3, 0)$$

•
$$\Delta_{Po2}(t) = \overline{\Delta} = \widetilde{\Delta} = (1/3, 0, -1/3)$$

Let consider a homogeneous case with 3 servers.

- Random: randomly joins one
 - $\mathbf{P}_{rand}(t) = (1/3, 1/3, 1/3)$
 - $\Delta(t) = \overline{\Delta} = \widetilde{\Delta} = (0, 0, 0)$
- JSQ: always join the shortest one

•
$$\mathbf{P}_{JSQ}(t) = (1, 0, 0)$$

- $\blacktriangleright \Delta_{JSQ}(t) = \overline{\Delta} = \widetilde{\Delta} = (2/3, -1/3, -1/3)$
- Power of 2: randomly picks two and joins the shorter one

►
$$\mathbf{P}_{Po2}(t) = (2/3, 1/3, 0)$$

► $\Delta_{Po2}(t) = \overline{\Delta} = \widetilde{\Delta} = (1/3, 0, -1/3)$

▶ *p*-JSQ: JSQ w.p. p + Random w.p. 1 - p, e.g., p = 0.5

- $\mathbf{P}_{0.5\text{-}JSQ}(t) = (1,0,0) \text{ or } \mathbf{P}_{0.5\text{-}JSQ}(t) = (1/3,1/3,1/3)$
- $\overline{\Delta} = (2/3, -1/3, -1/3)$ or $\overline{\Delta} = (1/3, 0, -1/3)$, with equal prob.
- $\Delta = (1/2, -1/6, -1/3).$

Long-term Dispatching Preference Condition Definition (LDPC)

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key message: 'slightly prefer shorter queues in the long-term'

Long-term Dispatching Preference Condition Definition (LDPC)

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

Key message: 'slightly prefer shorter queues in the long-term'

Theorem (LDPC \implies optimality)

Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Long-term Dispatching Preference Condition Definition (LDPC)

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

Key message: 'slightly prefer shorter queues in the long-term'

Theorem (LDPC \implies optimality)

Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Every coin has two sides:

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

Key message: 'slightly prefer shorter queues in the long-term'

Theorem (LDPC \implies optimality)

Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Every coin has two sides:

 We have an even larger class of optimal policies. (JSQ, Power-of-d, and more flexible ones...)

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

Key message: 'slightly prefer shorter queues in the long-term'

Theorem (LDPC \implies optimality)

Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Every coin has two sides:

 We have an even larger class of optimal policies. (JSQ, Power-of-d, and more flexible ones...)

▶ 📀 we have many poor polices even though they are optimal.

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

Key message: 'slightly prefer shorter queues in the long-term'

Theorem (LDPC \implies optimality)

Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Every coin has two sides:

- ▶ ⁽ⁱ⁾ we have an even larger class of optimal policies. (JSQ, Power-of-*d*, and more flexible ones...)
- ▶ 😔 we have many poor polices even though they are optimal.
 - ▶ p-JSQ (w.p. p JSQ, otherwise Random) satisfies LDPC for any p > 0

A load balancing scheme is said to satisfy the LDPC if

$$\widetilde{\Delta}_1 \geq \widetilde{\Delta}_2 \geq \ldots \geq \widetilde{\Delta}_N \quad \text{ and } \quad \widetilde{\Delta}_1 \neq \widetilde{\Delta}_N.$$

Key message: 'slightly prefer shorter queues in the long-term'

Theorem (LDPC \implies optimality)

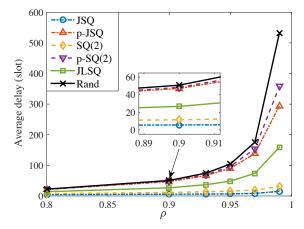
Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Every coin has two sides:

▶ ⁽ⁱ⁾ we have an even larger class of optimal policies. (JSQ, Power-of-*d*, and more flexible ones...)

- ▶ 😔 we have many poor polices even though they are optimal.
 - ▶ p-JSQ (w.p. p JSQ, otherwise Random) satisfies LDPC for any p > 0
 - ▶ Join longer or shorter queue (JLSQ) satisfies LDPC for any $p < \frac{N_1}{N}$
 - join one of the N_1 longest queue w.p. p
 - ▶ otherwise, join one of the $N N_1$ queues.

Simulations

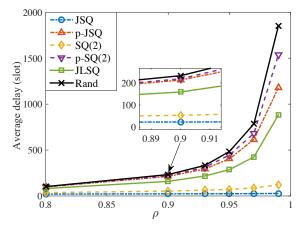


- number of servers: N = 10
- *p*-JSQ and *p*-SQ(2): *p* = 0.01

▶ JLSQ:
$$N_1 = N/2$$
, $p = 0.49$

In this setting, delay of p-SQ(2) is 20x larger than JSQ even at $\rho = 0.99$

Simulations (Cont'd)



- number of servers: N = 50
- *p*-JSQ and *p*-SQ(2): *p* = 0.01
- JLSQ: $N_1 = N/2$, p = 0.49

In this setting, delay of p-SQ(2) is 50x larger than JSQ even at $\rho = 0.99$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ For load balancing, heavy-traffic optimality may be a coarse metric.
- The practical performance of theoretically optimal scheme has huge difference:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ For load balancing, heavy-traffic optimality may be a coarse metric.
- The practical performance of theoretically optimal scheme has huge difference:
 - it can range from that of JSQ to that of (arbitrarily close) Random.

- ▶ For load balancing, heavy-traffic optimality may be a coarse metric.
- The practical performance of theoretically optimal scheme has huge difference:
 - it can range from that of JSQ to that of (arbitrarily close) Random.

 since 'optimality' only requires a long-term preference on shorter queues, i.e, LDPC.

- ▶ For load balancing, heavy-traffic optimality may be a coarse metric.
- The practical performance of theoretically optimal scheme has huge difference:
 - it can range from that of JSQ to that of (arbitrarily close) Random.

 since 'optimality' only requires a long-term preference on shorter queues, i.e, LDPC.

Question: Can we characterize the difference and differentiate them?

Part II: A Refined Metric

Quiz time....

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p, otherwise just uses Random.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p, otherwise just uses Random.

Question: Give the order of 'goodness' of the following choices of p? (A). p = 1 (B). p = 0.5 (C). p = 0.1 (D). p = 0.00001

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p, otherwise just uses Random.

Question: Give the order of 'goodness' of the following choices of p? (A). p = 1 (B). p = 0.5 (C). p = 0.1 (D). p = 0.00001A > B > C > D

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Definition

The degree of dispatching preference for a given load balancing scheme is given by the L_1 norm of the long-term dispatching preference, i.e., $\|\widetilde{\Delta}\|_1$.

'degree of dispatching preference = $\left\|\widetilde{\Delta}\right\|_{1}$ '

Definition

The degree of dispatching preference for a given load balancing scheme is given by the L_1 norm of the long-term dispatching preference, i.e., $\|\widetilde{\Delta}\|_1$.

'degree of dispatching preference = $\|\widetilde{\Delta}\|_1$ '

Note:

• it is actually the *total variation distance* from Random.

$$\blacktriangleright \|\widetilde{\Delta}\|_{1} = \|\widetilde{\mathbf{P}} - \mathbf{P}_{\mathsf{rand}}\|_{1} = 2\|\widetilde{\mathbf{P}} - \mathbf{P}_{\mathsf{rand}}\|_{tv}$$

Definition

The degree of dispatching preference for a given load balancing scheme is given by the L_1 norm of the long-term dispatching preference, i.e., $\|\widetilde{\Delta}\|_1$.

'degree of dispatching preference = $\|\widetilde{\Delta}\|_1$ '

Note:

▶ it is actually the *total variation distance* from Random.

$$\blacktriangleright \|\widetilde{\Delta}\|_{1} = \|\widetilde{\mathbf{P}} - \mathbf{P}_{\mathsf{rand}}\|_{1} = 2\|\widetilde{\mathbf{P}} - \mathbf{P}_{\mathsf{rand}}\|_{tv}$$

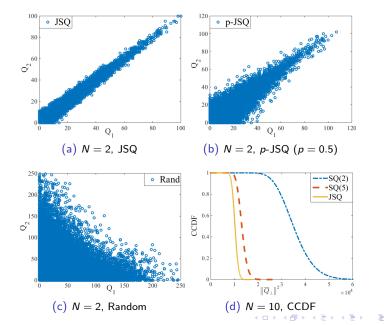
minimum attained at Random, maximum at JSQ.

• for *p*-JSQ,
$$\|\widetilde{\Delta}\|_1 \to 0$$
 as $p \to 0$.

What's the result of different degree of dispatching preference?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intuition...

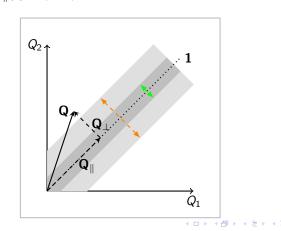


 $\mathcal{O} \mathcal{O} \mathcal{O}$

A Refined Metric

Definition

The degree of queue imbalance in a load balancing system with a steady-state queue length vector $\overline{\mathbf{Q}}$ is given by $\mathbb{E}\left[\left\|\overline{\mathbf{Q}}_{\perp}\right\|^{2}\right]$, where $\mathbf{Q}_{\perp} \triangleq \mathbf{Q}(t) - \mathbf{Q}_{\parallel}(t) = \langle \mathbf{Q}, \mathbf{1} \rangle \mathbf{1}$.



Theorem

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is on the order of

$$\lim_{\epsilon \downarrow 0} \mathbb{E}\left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] = \Theta \bigg(\frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} \bigg).$$

Degree of Queue Imbalance $\approx \frac{1}{(\text{Degree of Dispatching Preference})^2}$

Theorem

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is on the order of

$$\lim_{\epsilon \downarrow 0} \mathbb{E}\left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] = \Theta \bigg(\frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} \bigg).$$

Degree of Queue Imbalance $\approx \frac{1}{(\text{Degree of Dispatching Preference})^2}$

Take our favorite *p*-JSQ and *p*-power-of-*d* for example:

Theorem

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is on the order of

$$\lim_{\epsilon \downarrow 0} \mathbb{E}\left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] = \Theta \bigg(\frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} \bigg).$$

Degree of Queue Imbalance $\approx \frac{1}{(\text{Degree of Dispatching Preference})^2}$

Take our favorite *p*-JSQ and *p*-power-of-*d* for example:

• Part I shows that for any p > 0, they remain 'optimal'.

Theorem

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is on the order of

$$\lim_{\epsilon \downarrow 0} \mathbb{E}\left[\left\|\overline{\mathbf{Q}}_{\perp}^{(\epsilon)}\right\|^2\right] = \Theta\left(\frac{1}{\left\|\widetilde{\boldsymbol{\Delta}}\right\|_1^2}\right).$$

Degree of Queue Imbalance $\approx \frac{1}{(\text{Degree of Dispatching Preference})^2}$

Take our favorite *p*-JSQ and *p*-power-of-*d* for example:

- Part I shows that for any p > 0, they remain 'optimal'.
- But, the empirical delay gets worse as $p \rightarrow 0$.

Theorem

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is on the order of

$$\lim_{\epsilon \downarrow 0} \mathbb{E}\left[\left\|\overline{\mathbf{Q}}_{\perp}^{(\epsilon)}\right\|^2\right] = \Theta\left(\frac{1}{\left\|\widetilde{\boldsymbol{\Delta}}\right\|_1^2}\right).$$

Degree of Queue Imbalance $\approx \frac{1}{(\text{Degree of Dispatching Preference})^2}$

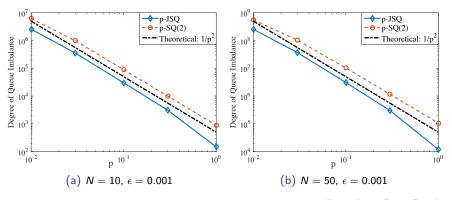
Take our favorite *p*-JSQ and *p*-power-of-*d* for example:

- Part I shows that for any p > 0, they remain 'optimal'.
- But, the empirical delay gets worse as $p \rightarrow 0$.
- ► The above theorem tells us the degree of queue imbalance $\rightarrow \infty$ on the order $\Theta\left(\frac{1}{p^2}\right)$ as $p \rightarrow 0$.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Degree of Queue Imbalance vs. p

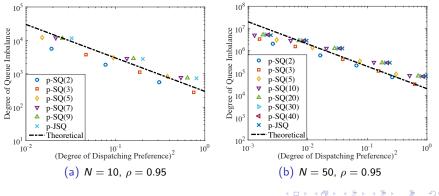
Degree of Queue Imbalance $\approx \frac{1}{p^2}$



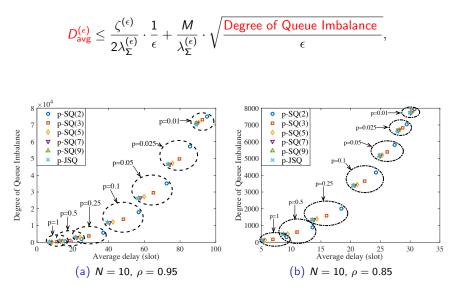
◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Degree of Queue Imbalance vs. $\|\widetilde{\Delta}\|_{1}$

Degree of Queue Imbalance pprox(Degree of Dispatching Preference)²

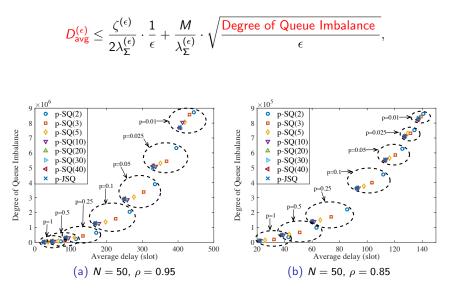


Degree of queue imbalance VS. Delay (N = 10)



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Degree of queue imbalance VS. Delay (N = 50)



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q (?)

Question: Can we characterize the difference and differentiate 'optimal' policies?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Answer: Yes!

Question: Can we characterize the difference and differentiate 'optimal' policies?

Answer: Yes!

- The solution is degree of queue imbalance.
 - instead of looking at the sum queue lengths.
 - ▶ it turns to look at the *expected queue-length difference*.

it can reflect the degree of dispatching preference.

Well...I want to learn some techniques!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Upper bound

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is upper bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] \leq \frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} \textit{M}_1,$$

where M_1 is some constant.

Upper bound

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is upper bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}
ight\|^2
ight] \leq rac{1}{\left\| \widetilde{\Delta}
ight\|_1^2} M_1,$$

where M_1 is some constant.

Note:

Upper bound

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is upper bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}
ight\|^2
ight] \leq rac{1}{\left\| \widetilde{\Delta}
ight\|_1^2} M_1,$$

where M_1 is some constant.

Note:

key idea is still Hajek's Lemma: moments bound from drift.

Upper bound

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is upper bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}
ight\|^2
ight] \leq rac{1}{\left\| \widetilde{\Delta}
ight\|_1^2} M_1,$$

where M_1 is some constant.

Note:

key idea is still Hajek's Lemma: moments bound from drift.

Some tricks need to extract the term $\|\widetilde{\Delta}\|_1$.

Upper bound

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is upper bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}
ight\|^2
ight] \leq rac{1}{\left\| \widetilde{\Delta}
ight\|_1^2} M_1,$$

where M_1 is some constant.

Note:

- key idea is still Hajek's Lemma: moments bound from drift.
- Some tricks need to extract the term $\|\widetilde{\Delta}\|_1$.
- Hence it directly characterizes the impact of different schemes on the upper bound.

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is lower bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] \geq \frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} M_2,$$

where M_2 is some constant.

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is lower bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] \geq \frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} M_2,$$

where M_2 is some constant.

Note:

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is lower bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] \geq \frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} M_2,$$

where M_2 is some constant.

Note:

> The same result holds for general 'optimal' schemes as well.

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is lower bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)} \right\|^2 \right] \geq \frac{1}{\left\| \widetilde{\Delta} \right\|_1^2} M_2,$$

where M_2 is some constant.

Note:

The same result holds for general 'optimal' schemes as well.

The 'moment bounds from drift' method fails.

Proposition

Under any load balancing scheme satisfying LDPC, the degree of queue imbalance is lower bounded by

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}
ight\|^2
ight] \geq rac{1}{\left\| \widetilde{\Delta}
ight\|_1^2} M_2,$$

where M_2 is some constant.

Note:

The same result holds for general 'optimal' schemes as well.

- The 'moment bounds from drift' method fails.
- We solve this with a novel Lyapunov function.

<ロ> <@> < E> < E> E のQの

1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{j>i}^{N} (Q_i - Q_j)^2$.

- 1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{i>i}^{N} (Q_i Q_j)^2$.
- 2. Setting mean drift to zero at steady-state:

$$\mathcal{B}^{(\epsilon)} := 2\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] = \mathcal{T}_{1}^{(\epsilon)} - \mathcal{T}_{2}^{(\epsilon)} + \mathcal{T}_{3}^{(\epsilon)},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

where

- 1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{j>i}^{N} (Q_i Q_j)^2$.
- 2. Setting mean drift to zero at steady-state:

$$\mathcal{B}^{(\epsilon)} := 2\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] = \mathcal{T}_{1}^{(\epsilon)} - \mathcal{T}_{2}^{(\epsilon)} + \mathcal{T}_{3}^{(\epsilon)},$$

where

 $\mathcal{B}^{(\epsilon)} \rightarrow 0$ (optimality)

- 1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{j>i}^{N} (Q_i Q_j)^2$.
- 2. Setting mean drift to zero at steady-state:

$$\mathcal{B}^{(\epsilon)} := 2\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] = \mathcal{T}_{1}^{(\epsilon)} - \mathcal{T}_{2}^{(\epsilon)} + \mathcal{T}_{3}^{(\epsilon)},$$

where

 $\mathcal{B}^{(\epsilon)} \rightarrow 0$ (optimality)

$$\mathcal{T}_{2}^{(\epsilon)} := \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{U}_{i}^{(\epsilon)} - \overline{U}_{j}^{(\epsilon)}\right)^{2}\right] \to 0$$

- 1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{j>i}^{N} (Q_i Q_j)^2$.
- 2. Setting mean drift to zero at steady-state:

$$\mathcal{B}^{(\epsilon)} := 2\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] = \mathcal{T}_{1}^{(\epsilon)} - \mathcal{T}_{2}^{(\epsilon)} + \mathcal{T}_{3}^{(\epsilon)},$$

where

 $\mathcal{B}^{(\epsilon)} \rightarrow 0$ (optimality)

$$\mathcal{T}_{2}^{(\epsilon)} := \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{U}_{i}^{(\epsilon)} - \overline{U}_{j}^{(\epsilon)}\right)^{2}\right] \to 0$$

$$\mathcal{T}_{3}^{(\epsilon)} := \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{A}_{i}^{(\epsilon)} - \overline{A}_{j}^{(\epsilon)} - \overline{S}_{i}^{(\epsilon)} + \overline{S}_{j}^{(\epsilon)} \right)^{2} \right] \to K$$

- 1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{j>i}^{N} (Q_i Q_j)^2$.
- 2. Setting mean drift to zero at steady-state:

$$\mathcal{B}^{(\epsilon)} := 2\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] = \mathcal{T}_{1}^{(\epsilon)} - \mathcal{T}_{2}^{(\epsilon)} + \mathcal{T}_{3}^{(\epsilon)},$$

where

 $\mathcal{B}^{(\epsilon)} \rightarrow 0$ (optimality)

$$\mathcal{T}_{2}^{(\epsilon)} := \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{U}_{i}^{(\epsilon)} - \overline{U}_{j}^{(\epsilon)}\right)^{2}\right] \to 0$$

$$\begin{split} \mathcal{T}_{3}^{(\epsilon)} &:= \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{\mathcal{A}}_{i}^{(\epsilon)} - \overline{\mathcal{A}}_{j}^{(\epsilon)} - \overline{\mathcal{S}}_{i}^{(\epsilon)} + \overline{\mathcal{S}}_{j}^{(\epsilon)} \right)^{2} \right] \to \mathcal{K} \\ \mathcal{T}_{1}^{(\epsilon)} &:= 2\lambda_{\Sigma}^{(\epsilon)} \mathcal{N} \mathbb{E}\left[\langle \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}, \widetilde{\Delta} \rangle \right] \end{split}$$

- 1. Consider the Lyapunov function: $V(\mathbf{Q}) \triangleq \sum_{i=1}^{N} \sum_{i>i}^{N} (Q_i Q_j)^2$.
- 2. Setting mean drift to zero at steady-state:

$$\mathcal{B}^{(\epsilon)} := 2\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] = \mathcal{T}_{1}^{(\epsilon)} - \mathcal{T}_{2}^{(\epsilon)} + \mathcal{T}_{3}^{(\epsilon)},$$

where

 $\mathcal{B}^{(\epsilon)} \rightarrow 0$ (optimality)

$$\mathcal{T}_{2}^{(\epsilon)} := \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{U}_{i}^{(\epsilon)} - \overline{U}_{j}^{(\epsilon)}\right)^{2}\right] \to 0$$

$$\begin{aligned} \mathcal{T}_{3}^{(\epsilon)} &:= \sum_{i=1}^{N} \sum_{j>i}^{N} \mathbb{E}\left[\left(\overline{A}_{i}^{(\epsilon)} - \overline{A}_{j}^{(\epsilon)} - \overline{S}_{i}^{(\epsilon)} + \overline{S}_{j}^{(\epsilon)} \right)^{2} \right] \to \mathcal{K} \\ \mathcal{T}_{1}^{(\epsilon)} &:= 2\lambda_{\Sigma}^{(\epsilon)} \mathsf{N}\mathbb{E}\left[\langle \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}, \widetilde{\Delta} \rangle \right] \end{aligned}$$

3. Thus, we have $\lim_{\epsilon \downarrow 0} 2\mu_{\Sigma} N \mathbb{E} \left[\langle \overline{\mathbf{Q}}_{\perp}^{(\epsilon)}, \widetilde{\Delta} \rangle \right] = -K.$

In summary, we try to go beyond heavy-traffic optimality:

- 1. we show that HT-optimality is coarse: it contains policies that can be arbitrarily close to Random.
 - A weak condition such as LDPC is enough.
 - > As a result, slight preference in the long-term implies optimality.

In summary, we try to go beyond heavy-traffic optimality:

- 1. we show that HT-optimality is coarse: it contains policies that can be arbitrarily close to Random.
 - A weak condition such as LDPC is enough.
 - ► As a result, slight preference in the long-term implies optimality.

- 2. we propose a new metric Degree of Queue Imbalance, which can differentiate between good and poor policies.
 - Look at the queue-length difference among servers.
 - The closer...The worse...

Wait... one more question, how about general case?

Wait... one more question, how about general case?

Have you heard Erdős Number?

'Perfect Death'

"....I finish up an important theorem... Then someone in the audience shouts out, '*What about the general case*?'

- Paul Erdős

'Perfect Death'

"....I finish up an important theorem... Then someone in the audience shouts out, '*What about the general case*?' I'll turn to the audience and smile, say 'I'll leave that to the next generation,' and then I'll *keel over*. "

— Paul Erdős

For heterogeneous servers:

Main results established before still hold in a weaker sense under some mild additional conditions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Thank you!

Backup

- Can we generalize this method to other scenarios?
- Is the LDPC condition necessary for optimality?
- Sometimes, a perfect balance of queue lengths may not be good.

< ㅁ > < 큔 > < 돋 > < 돋 > 돋 의직(관

1. A sufficient and necessary condition:

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}^{(\epsilon)}(t+1) \right\|_1 \left\| \overline{\mathbf{U}}^{(\epsilon)}(t) \right\|_1 \right] = 0.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• U(t) is the unused service due to empty queue.

1. A sufficient and necessary condition:

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}^{(\epsilon)}(t+1) \right\|_1 \left\| \overline{\mathbf{U}}^{(\epsilon)}(t) \right\|_1 \right] = 0.$$

• U(t) is the unused service due to empty queue.

2. The condition can be upper bounded by

$$\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] \leq N\sqrt{C\epsilon\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}_{\perp}(t)\right\|^{2}\right]}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. A sufficient and necessary condition:

$$\lim_{\epsilon \downarrow 0} \mathbb{E} \left[\left\| \overline{\mathbf{Q}}^{(\epsilon)}(t+1) \right\|_1 \left\| \overline{\mathbf{U}}^{(\epsilon)}(t) \right\|_1 \right] = 0.$$

• U(t) is the unused service due to empty queue.

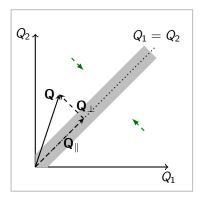
2. The condition can be upper bounded by

$$\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}(t+1)\right\|_{1}\left\|\overline{\mathbf{U}}^{(\epsilon)}(t)\right\|_{1}\right] \leq N\sqrt{C\epsilon\mathbb{E}\left[\left\|\overline{\mathbf{Q}}^{(\epsilon)}_{\perp}(t)\right\|^{2}\right]}.$$

3. The moment term is upper bounded by a constant under LDPC

- Lyapunov drift
- T-step Hajek's Lemma

More on moments bound



► The drift ` is indicated by

$$\mathbb{E}\left[\left< \mathbf{Q}_{\perp}, \mathbf{A} - \mathbf{S} \right> \mid \mathbf{Q}
ight]$$
 .

- for each t, it can be either positive or negative.
- but, under LDPC, there exists finite T

$$\sum_{t=t_0}^{t_0+\mathcal{T}-1} \mathbb{E}\left[\langle \mathbf{Q}_{\perp}, \mathbf{A} - \mathbf{S}
angle \mid \mathbf{Q}(t_0)
ight] pprox - \delta \left\| \mathbf{Q}_{\perp}
ight\|$$

► that is, long term drift `▲ is positive.