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In this talk, we focus heavy-traffic regime, ask two questions below:

1. Question: How large can the difference be in the empirical delay for
different ‘optimal’ schemes?

I we know ‘optimality’ exists in heavy-traffic limit.
I but, how much does it tell about moderate load?
I how far away from just random routing in empirical performance?

2. Question: Can we characterize the difference and differentiate the

policies that are ‘optimal’?
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Before we start...

Definition (Heavy-traffic Delay Optimal)
It can achieve the lower bound on delay when ε→ 0, that is,
limε↓0 E [

∑
Qn] = limε↓0 E [q]

Fact: E [
∑

Qn] ≥ E [q], since packet remains in the queue until finished.



Quiz time....

Consider the following policy: at each time-slot t, it adopts JSQ w.p. p,
otherwise just uses Random.

Question: Which of the following p value guarantees ‘optimality’?

(A). p = 1 (B). p = 0.5 (C). p = 0.1 (D). p = 0.00001

All the choices are correct!
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Part I: Limitation of heavy-traffic optimality in load balancing



Main Result

Question: How large can the difference be in the empirical delay for
different ‘optimal’ schemes?

Answer: The empirical delay of ‘optimal’ policies can range from JSQ

to arbitrarily close to Random (p = 0.00001)

I A very weak condition is enough: in the long-term, the dispatcher
favors (even slightly) shorter queues.

I This condition is called LDPC: Long-term Dispatching Preference
Condition.
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Dispatching distribution and preference

Let us focus on homogeneous servers first.

The nth component of dispatching distribution P(t) is the probability of
dispatching arrival to the nth shortest queue.

We also define dispatching preference

∆(t) , P(t)− Prand(t)

where Prand(t) is the dispatching distribution under random routing.

Let random vector ∆ denote the dispatching preference in steady-state.

∆̃ = E
[
∆
]
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Example

Let consider a homogeneous case with 3 servers.

I Random: randomly joins one
I Prand(t) = (1/3, 1/3, 1/3)
I ∆(t) = ∆ = ∆̃ = (0, 0, 0)

I JSQ: always join the shortest one
I PJSQ(t) = (1, 0, 0)
I ∆JSQ(t) = ∆ = ∆̃ = (2/3,−1/3,−1/3)

I Power of 2: randomly picks two and joins the shorter one
I PPo2(t) = (2/3, 1/3, 0)
I ∆Po2(t) = ∆ = ∆̃ = (1/3, 0,−1/3)

I p-JSQ: JSQ w.p. p + Random w.p. 1− p, e.g., p = 0.5
I P0.5-JSQ(t) = (1, 0, 0) or P0.5-JSQ(t) = (1/3, 1/3, 1/3)
I ∆ = (2/3,−1/3,−1/3) or ∆ = (1/3, 0,−1/3),with equal prob.
I ∆̃ = (1/2,−1/6,−1/3).
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Long-term Dispatching Preference Condition

Definition (LDPC)
A load balancing scheme is said to satisfy the LDPC if

∆̃1 ≥ ∆̃2 ≥ . . . ≥ ∆̃N and ∆̃1 6= ∆̃N .

Key message: ‘slightly prefer shorter queues in the long-term’

Theorem (LDPC =⇒ optimality)
Any load balancing scheme satisfying LDPC is heavy-traffic delay optimal.

Every coin has two sides:

I we have an even larger class of optimal policies. (JSQ,
Power-of-d , and more flexible ones...)

I we have many poor polices even though they are optimal.
I p-JSQ (w.p. p JSQ, otherwise Random) satisfies LDPC for any

p > 0
I Join longer or shorter queue (JLSQ) satisfies LDPC for any p < N1

N
I join one of the N1 longest queue w.p. p
I otherwise, join one of the N − N1 queues.
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In this setting, delay of p-SQ(2) is 20x larger than JSQ even at ρ = 0.99
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What we have shown...

I For load balancing, heavy-traffic optimality may be a coarse metric.

I The practical performance of theoretically optimal scheme has huge
difference:

I it can range from that of JSQ to that of (arbitrarily close) Random.
I since ‘optimality’ only requires a long-term preference on shorter

queues, i.e, LDPC.

Question: Can we characterize the difference and differentiate them?
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Part II: A Refined Metric
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Consider the following policy: at each time-slot t, it adopts JSQ w.p. p,
otherwise just uses Random.

Question: Give the order of ‘goodness’ of the following choices of p?

(A). p = 1 (B). p = 0.5 (C). p = 0.1 (D). p = 0.00001

A > B > C > D
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How close to Random...

Definition
The degree of dispatching preference for a given load balancing scheme is
given by the L1 norm of the long-term dispatching preference, i.e.,

∥∥∆̃
∥∥

1
.

’degree of dispatching preference =
∥∥∆̃
∥∥

1
’

Note:
I it is actually the total variation distance from Random.

I
∥∥∆̃
∥∥

1
=
∥∥P̃− Prand

∥∥
1

= 2
∥∥P̃− Prand

∥∥
tv

I minimum attained at Random, maximum at JSQ.

I for p-JSQ,
∥∥∆̃
∥∥

1
→ 0 as p → 0.
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What’s the result of different degree of dispatching preference?



Intuition...

(a) N = 2, JSQ (b) N = 2, p-JSQ (p = 0.5)

(c) N = 2, Random (d) N = 10, CCDF



A Refined Metric

Definition
The degree of queue imbalance in a load balancing system with a

steady-state queue length vector Q is given by E
[∥∥Q⊥∥∥2

]
, where

Q⊥ , Q(t)−Q‖(t) = 〈Q, 1〉1.

Q1

Q2

Q
Q⊥

Q‖

1



The closer, The worse...

Theorem
Under any load balancing scheme satisfying LDPC, the degree of queue
imbalance is on the order of
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= Θ

(
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1

)
.

Degree of Queue Imbalance ≈ 1

(Degree of Dispatching Preference)2

Take our favorite p-JSQ and p-power-of-d for example:

I Part I shows that for any p > 0, they remain ‘optimal’.

I But, the empirical delay gets worse as p → 0.

I The above theorem tells us the degree of queue imbalance →∞ on

the order Θ
(

1
p2

)
as p → 0.
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What we have shown...

Question: Can we characterize the difference and differentiate ‘optimal’
policies?

Answer: Yes!

I The solution is degree of queue imbalance.
I instead of looking at the sum queue lengths.
I it turns to look at the expected queue-length difference.
I it can reflect the degree of dispatching preference.
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Well...I want to learn some techniques!



Upper bound

Proposition
Under any load balancing scheme satisfying LDPC, the degree of queue
imbalance is upper bounded by

lim
ε↓0

E
[∥∥∥Q(ε)

⊥

∥∥∥2
]
≤ 1∥∥∥∆̃

∥∥∥2

1

M1,

where M1 is some constant.

Note:

I key idea is still Hajek’s Lemma: moments bound from drift.

I Some tricks need to extract the term
∥∥∆̃
∥∥

1
.

I Hence it directly characterizes the impact of different schemes on
the upper bound.
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Lower bound

Proposition
Under any load balancing scheme satisfying LDPC, the degree of queue
imbalance is lower bounded by
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where M2 is some constant.

Note:

I The same result holds for general ‘optimal’ schemes as well.

I The ‘moment bounds from drift’ method fails.

I We solve this with a novel Lyapunov function.
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Universal equality

1. Consider the Lyapunov function: V (Q) ,
∑N

i=1

∑N
j>i (Qi − Qj)

2.

2. Setting mean drift to zero at steady-state:

B(ε) := 2E
[∥∥∥Q(ε)

(t + 1)
∥∥∥

1

∥∥∥U(ε)
(t)
∥∥∥

1

]
= T (ε)

1 − T (ε)
2 + T (ε)

3 ,

where

B(ε)→ 0 (optimality)

T (ε)
2 :=

N∑
i=1

N∑
j>i

E
[(

U
(ε)

i − U
(ε)

j

)2
]
→ 0

T (ε)
3 :=

N∑
i=1

N∑
j>i

E
[(

A
(ε)

i − A
(ε)

j − S
(ε)

i + S
(ε)

j

)2
]
→ K

T (ε)
1 := 2λ

(ε)
Σ NE

[
〈Q(ε)

⊥ , ∆̃〉
]

3. Thus, we have limε↓0 2µΣNE
[
〈Q(ε)

⊥ , ∆̃〉
]

= −K .
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In summary, we try to go beyond heavy-traffic optimality:

1. we show that HT-optimality is coarse: it contains policies that can
be arbitrarily close to Random.

I A weak condition such as LDPC is enough.
I As a result, slight preference in the long-term implies optimality.

2. we propose a new metric Degree of Queue Imbalance, which can
differentiate between good and poor policies.

I Look at the queue-length difference among servers.
I The closer...The worse...
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For heterogeneous servers:

Main results established before still hold in a weaker sense under some
mild additional conditions.



Thank you!



Backup

I Can we generalize this method to other scenarios?

I Is the LDPC condition necessary for optimality?

I Sometimes, a perfect balance of queue lengths may not be good.



Here is the intuition...

1. A sufficient and necessary condition:

lim
ε↓0

E
[∥∥∥Q(ε)

(t + 1)
∥∥∥

1

∥∥∥U(ε)
(t)
∥∥∥

1

]
= 0.
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3. The moment term is upper bounded by a constant under LDPC
I Lyapunov drift
I T -step Hajek’s Lemma
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More on moments bound

Q1

Q2 Q1 = Q2

Q
Q⊥

Q‖

I The drift is indicated by

E [〈Q⊥,A− S〉 | Q] .

I for each t, it can be either positive or
negative.

I but, under LDPC, there exists finite T

t0+T−1∑
t=t0

E [〈Q⊥,A− S〉 | Q(t0)] ≈ −δ ‖Q⊥‖

I that is, long term drift is positive.


