
Throughput and Heavy-tra�c Optimality of General
Load Balancing Algorithm in Cloud Networks

Xingyu Zhou

The Ohio State University

zhou.2055@osu.edu

October 24, 2016

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 1 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 2 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 3 / 36



Cloud is everywhere in life

Source: https://www.skyhighnetworks.com/

Figure: Top 20 consumer cloud services in 2016

Question: What makes a good cloud service?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 4 / 36



Cloud is everywhere in life

Source: https://www.skyhighnetworks.com/

Figure: Top 20 consumer cloud services in 2016

Question: What makes a good cloud service?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 4 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.

I It determines how many units of information an application can process in a
period of time.

I High throughput means the application can handle more number of concurrent
users.

Fast: Low delay and response time

I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.

I It determines how many units of information an application can process in a
period of time.

I High throughput means the application can handle more number of concurrent
users.

Fast: Low delay and response time

I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.

I High throughput means the application can handle more number of concurrent
users.

Fast: Low delay and response time

I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.
I High throughput means the application can handle more number of concurrent

users.

Fast: Low delay and response time

I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.
I High throughput means the application can handle more number of concurrent

users.

Fast: Low delay and response time

I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.
I High throughput means the application can handle more number of concurrent

users.

Fast: Low delay and response time
I It determines how much time an application takes to return a request to users.

I Low response time means a good user experience and also great profit for
companies.

I Examples1:
F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.
I High throughput means the application can handle more number of concurrent

users.

Fast: Low delay and response time
I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.

I Examples1:
F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.
I High throughput means the application can handle more number of concurrent

users.

Fast: Low delay and response time
I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

1
Credit: Prof. Ness Shro↵ Mobihoc 2015 Talk

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.
I It determines how many units of information an application can process in a

period of time.
I High throughput means the application can handle more number of concurrent

users.

Fast: Low delay and response time
I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Question: How do we design an e↵ective and fast cloud system?

1
Credit: Prof. Ness Shro↵ Mobihoc 2015 Talk

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 5 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 6 / 36



Load Balancing in Cloud

Figure: A typical model in cloud system

Load balancing: Choose the right server(s) when requests coming.

I It is the key to optimize resource use, maximize throughput, reduce response
time in cloud system.

I It becomes more and more critical due to explosive increase in the number of
servers and tra�c in cloud system.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 7 / 36



Load Balancing in Cloud

Figure: A typical model in cloud system

Load balancing: Choose the right server(s) when requests coming.
I It is the key to optimize resource use, maximize throughput, reduce response

time in cloud system.

I It becomes more and more critical due to explosive increase in the number of
servers and tra�c in cloud system.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 7 / 36



Load Balancing in Cloud

Figure: A typical model in cloud system

Load balancing: Choose the right server(s) when requests coming.
I It is the key to optimize resource use, maximize throughput, reduce response

time in cloud system.
I It becomes more and more critical due to explosive increase in the number of

servers and tra�c in cloud system.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 7 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.

I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and
Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]

I Job arrival: Batch sampling is introduced to reduce sampling overhead.
Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.

I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled
time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.

I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and
Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]

I Job arrival: Batch sampling is introduced to reduce sampling overhead.
Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.

I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled
time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]

I Job arrival: Batch sampling is introduced to reduce sampling overhead.
Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.

I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled
time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]
I Job arrival: Batch sampling is introduced to reduce sampling overhead.

Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.

I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled
time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]
I Job arrival: Batch sampling is introduced to reduce sampling overhead.

Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.

I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled
time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]
I Job arrival: Batch sampling is introduced to reduce sampling overhead.

Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.
I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled

time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]
I Job arrival: Batch sampling is introduced to reduce sampling overhead.

Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.
I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled

time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]
I Job arrival: Batch sampling is introduced to reduce sampling overhead.

Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.
I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled

time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Questions: Can we generalize existing load balancing algorithm?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.
I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and

Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]
I Job arrival: Batch sampling is introduced to reduce sampling overhead.

Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.
I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled

time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]

Questions: Can we generalize existing load balancing algorithm?

Question: Do we really need sampling for each arrival?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 8 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 9 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 10 / 36



System Model and Assumptions

The exogenous arrival process A⌃(t) with mean rate �⌃ is i.i.d and also independent
of service, queue length, and routing decision. A⌃(t)  Amax < 1 for all t � 0

Each service process S
n

(t) with mean rate µ
n

is i.i.d and also independent of other
service, arrival, queue length, and routing decision. S

n

(t)  Smax < 1 for all t � 0
and all n 2 {1, 2, . . . ,N}, and S⌃(t) =

P
S

n

(t) is the hypothetical total service with
mean µ⌃ =

P
µ
n

. ✏ = µ⌃ � �⌃ indicates how close the arrival rate to the boundary.

Requests cannot be removed from server to server.

Queue length dynamic is

Q

n

(t + 1) = [Q
n

(t) + A

n

(t)� S

n

(t)]+

= Q

n

(t) + A

n

(t)� S

n

(t) + U

n

(t).
(1)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 11 / 36



System Model and Assumptions

The exogenous arrival process A⌃(t) with mean rate �⌃ is i.i.d and also independent
of service, queue length, and routing decision. A⌃(t)  Amax < 1 for all t � 0

Each service process S
n

(t) with mean rate µ
n

is i.i.d and also independent of other
service, arrival, queue length, and routing decision. S

n

(t)  Smax < 1 for all t � 0
and all n 2 {1, 2, . . . ,N}, and S⌃(t) =

P
S

n

(t) is the hypothetical total service with
mean µ⌃ =

P
µ
n

. ✏ = µ⌃ � �⌃ indicates how close the arrival rate to the boundary.

Requests cannot be removed from server to server.

Queue length dynamic is

Q

n

(t + 1) = [Q
n

(t) + A

n

(t)� S

n

(t)]+

= Q

n

(t) + A

n

(t)� S

n

(t) + U

n

(t).
(1)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 11 / 36



System Model and Assumptions

The exogenous arrival process A⌃(t) with mean rate �⌃ is i.i.d and also independent
of service, queue length, and routing decision. A⌃(t)  Amax < 1 for all t � 0

Each service process S
n

(t) with mean rate µ
n

is i.i.d and also independent of other
service, arrival, queue length, and routing decision. S

n

(t)  Smax < 1 for all t � 0
and all n 2 {1, 2, . . . ,N}, and S⌃(t) =

P
S

n

(t) is the hypothetical total service with
mean µ⌃ =

P
µ
n

. ✏ = µ⌃ � �⌃ indicates how close the arrival rate to the boundary.

Requests cannot be removed from server to server.

Queue length dynamic is

Q

n

(t + 1) = [Q
n

(t) + A

n

(t)� S

n

(t)]+

= Q

n

(t) + A

n

(t)� S

n

(t) + U

n

(t).
(1)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 11 / 36



System Model and Assumptions

The exogenous arrival process A⌃(t) with mean rate �⌃ is i.i.d and also independent
of service, queue length, and routing decision. A⌃(t)  Amax < 1 for all t � 0

Each service process S
n

(t) with mean rate µ
n

is i.i.d and also independent of other
service, arrival, queue length, and routing decision. S

n

(t)  Smax < 1 for all t � 0
and all n 2 {1, 2, . . . ,N}, and S⌃(t) =

P
S

n

(t) is the hypothetical total service with
mean µ⌃ =

P
µ
n

. ✏ = µ⌃ � �⌃ indicates how close the arrival rate to the boundary.

Requests cannot be removed from server to server.

Queue length dynamic is

Q

n

(t + 1) = [Q
n

(t) + A

n

(t)� S

n

(t)]+

= Q

n

(t) + A

n

(t)� S

n

(t) + U

n

(t).
(1)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 11 / 36



System Model and Assumptions

The exogenous arrival process A⌃(t) with mean rate �⌃ is i.i.d and also independent
of service, queue length, and routing decision. A⌃(t)  Amax < 1 for all t � 0

Each service process S
n

(t) with mean rate µ
n

is i.i.d and also independent of other
service, arrival, queue length, and routing decision. S

n

(t)  Smax < 1 for all t � 0
and all n 2 {1, 2, . . . ,N}, and S⌃(t) =

P
S

n

(t) is the hypothetical total service with
mean µ⌃ =

P
µ
n

. ✏ = µ⌃ � �⌃ indicates how close the arrival rate to the boundary.

Requests cannot be removed from server to server.

Queue length dynamic is

Q

n

(t + 1) = [Q
n

(t) + A

n

(t)� S

n

(t)]+

= Q

n

(t) + A

n

(t)� S

n

(t) + U

n

(t).
(1)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 11 / 36



Definitions of Throughput and Heavy-tra�c Optimal

Definition (Throughput Optimality)

In general, a load balancing policy is said to be throughput optimal if it can
stabilize any set of arrival rates which can be stabilized by another policy. In our
model, a load balancing policy is throughput optimal if it can stabilize any
exogenous rate �⌃ < µ⌃.

Definition (Equivalent Single Queue)

A single queue process q(t) is said to be the equivalent single queue of the load
balancing system if a(t) = A⌃(t) and s(t) = S⌃(t). Clearly, q(t) st

P
Q

n

(t)

Definition (Heavy-tra�c Optimality)

A load balancing policy is said to be heavy-tra�c optimal if the expected
steady-state sum queue length is asymptoticly the same as the equivalent single
queue when the arrival rate approaches to the capacity boundary.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 12 / 36



Definitions of Throughput and Heavy-tra�c Optimal

Definition (Throughput Optimality)

In general, a load balancing policy is said to be throughput optimal if it can
stabilize any set of arrival rates which can be stabilized by another policy. In our
model, a load balancing policy is throughput optimal if it can stabilize any
exogenous rate �⌃ < µ⌃.

Definition (Equivalent Single Queue)

A single queue process q(t) is said to be the equivalent single queue of the load
balancing system if a(t) = A⌃(t) and s(t) = S⌃(t). Clearly, q(t) st

P
Q

n

(t)

Definition (Heavy-tra�c Optimality)

A load balancing policy is said to be heavy-tra�c optimal if the expected
steady-state sum queue length is asymptoticly the same as the equivalent single
queue when the arrival rate approaches to the capacity boundary.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 12 / 36



Definitions of Throughput and Heavy-tra�c Optimal

Definition (Throughput Optimality)

In general, a load balancing policy is said to be throughput optimal if it can
stabilize any set of arrival rates which can be stabilized by another policy. In our
model, a load balancing policy is throughput optimal if it can stabilize any
exogenous rate �⌃ < µ⌃.

Definition (Equivalent Single Queue)

A single queue process q(t) is said to be the equivalent single queue of the load
balancing system if a(t) = A⌃(t) and s(t) = S⌃(t). Clearly, q(t) st

P
Q

n

(t)

Definition (Heavy-tra�c Optimality)

A load balancing policy is said to be heavy-tra�c optimal if the expected
steady-state sum queue length is asymptoticly the same as the equivalent single
queue when the arrival rate approaches to the capacity boundary.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 12 / 36



Definitions of Throughput and Heavy-tra�c Optimal

Definition (Throughput Optimality)

In general, a load balancing policy is said to be throughput optimal if it can
stabilize any set of arrival rates which can be stabilized by another policy. In our
model, a load balancing policy is throughput optimal if it can stabilize any
exogenous rate �⌃ < µ⌃.

Definition (Equivalent Single Queue)

A single queue process q(t) is said to be the equivalent single queue of the load
balancing system if a(t) = A⌃(t) and s(t) = S⌃(t). Clearly, q(t) st

P
Q

n

(t)

Definition (Heavy-tra�c Optimality)

A load balancing policy is said to be heavy-tra�c optimal if the expected
steady-state sum queue length is asymptoticly the same as the equivalent single
queue when the arrival rate approaches to the capacity boundary.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 12 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 13 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 14 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 15 / 36



Main Ideas

Choose the Lyapunov function Z (Q) , kQk21 =
⇣P

N

n=1 Qn

⌘2

, and set the

mean drift to zero in steady-state to get bounds.

I (R1) It requires the existence of a stationary distribution Q.
I (R2) It requires bounded moments of the stationary distribution to avoid the

situation 1�1, i.e, E
h��Q

��2
i
 M.

Assume (R1) and (R2) satisfy, we obtain the expected sum queue length in
steady-state

✏E
"

NX

n=1

Q
(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2
1

i
(2)

By letting N = 1, expected queue length for the corresponding Equivalent
Single Queue is simply

✏E
h
q(✏)

i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

⇥
u2
⇤

(3)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 16 / 36



Main Ideas

Choose the Lyapunov function Z (Q) , kQk21 =
⇣P

N

n=1 Qn

⌘2

, and set the

mean drift to zero in steady-state to get bounds.
I (R1) It requires the existence of a stationary distribution Q.

I (R2) It requires bounded moments of the stationary distribution to avoid the

situation 1�1, i.e, E
h��Q

��2
i
 M.

Assume (R1) and (R2) satisfy, we obtain the expected sum queue length in
steady-state

✏E
"

NX

n=1

Q
(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2
1

i
(2)

By letting N = 1, expected queue length for the corresponding Equivalent
Single Queue is simply

✏E
h
q(✏)

i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

⇥
u2
⇤

(3)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 16 / 36



Main Ideas

Choose the Lyapunov function Z (Q) , kQk21 =
⇣P

N

n=1 Qn

⌘2

, and set the

mean drift to zero in steady-state to get bounds.
I (R1) It requires the existence of a stationary distribution Q.
I (R2) It requires bounded moments of the stationary distribution to avoid the

situation 1�1, i.e, E
h��Q

��2
i
 M.

Assume (R1) and (R2) satisfy, we obtain the expected sum queue length in
steady-state

✏E
"

NX

n=1

Q
(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2
1

i
(2)

By letting N = 1, expected queue length for the corresponding Equivalent
Single Queue is simply

✏E
h
q(✏)

i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

⇥
u2
⇤

(3)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 16 / 36



Main Ideas

Choose the Lyapunov function Z (Q) , kQk21 =
⇣P

N

n=1 Qn

⌘2

, and set the

mean drift to zero in steady-state to get bounds.
I (R1) It requires the existence of a stationary distribution Q.
I (R2) It requires bounded moments of the stationary distribution to avoid the

situation 1�1, i.e, E
h��Q

��2
i
 M.

Assume (R1) and (R2) satisfy, we obtain the expected sum queue length in
steady-state

✏E
"

NX

n=1

Q
(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2
1

i
(2)

By letting N = 1, expected queue length for the corresponding Equivalent
Single Queue is simply

✏E
h
q(✏)

i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

⇥
u2
⇤

(3)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 16 / 36



Main Ideas

Choose the Lyapunov function Z (Q) , kQk21 =
⇣P

N

n=1 Qn

⌘2

, and set the

mean drift to zero in steady-state to get bounds.
I (R1) It requires the existence of a stationary distribution Q.
I (R2) It requires bounded moments of the stationary distribution to avoid the

situation 1�1, i.e, E
h��Q

��2
i
 M.

Assume (R1) and (R2) satisfy, we obtain the expected sum queue length in
steady-state

✏E
"

NX

n=1

Q
(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2
1

i
(2)

By letting N = 1, expected queue length for the corresponding Equivalent
Single Queue is simply

✏E
h
q(✏)

i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

⇥
u2
⇤

(3)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 16 / 36



Main Ideas (Cont’d)

Foe the equivalent single queue, by exploiting the most important equation
q(t + 1)u(t) = 0 and the fact E

⇥
u

2
⇤
is o(✏), we have

✏E
h
q

(✏)
i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

h
u

2
i

=
⇣(✏)

2
� o(✏)

Foe the N server, by exploiting the equation Q

n

(t + 1)U
n

(t) = 0 and the fact

E
h��U(t)

��2

1

i
is o(✏), we have

✏E
"

NX

n=1

Q

(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2

1

i

=
⇣(✏)

2
+ NE

⇥
hU,�Q?(t + 1)i

⇤
� o(✏)

 ⇣(✏)

2
+

r
E
h��Q?

��2
i
o(✏)� o(✏)

in which Q? is the perpendicular component of Q with respect to c = 1p
N

1

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 17 / 36



Main Ideas (Cont’d)

Foe the equivalent single queue, by exploiting the most important equation
q(t + 1)u(t) = 0 and the fact E

⇥
u

2
⇤
is o(✏), we have

✏E
h
q

(✏)
i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

h
u

2
i

=
⇣(✏)

2
� o(✏)

Foe the N server, by exploiting the equation Q

n

(t + 1)U
n

(t) = 0 and the fact

E
h��U(t)

��2

1

i
is o(✏), we have

✏E
"

NX

n=1

Q

(✏)
n

#
=

⇣(✏)

2
+ E

⇥��Q(t + 1)
��
1

��U(t)
��
1

⇤
� E

h��U(t)
��2

1

i

=
⇣(✏)

2
+ NE

⇥
hU,�Q?(t + 1)i

⇤
� o(✏)

 ⇣(✏)

2
+

r
E
h��Q?

��2
i
o(✏)� o(✏)

in which Q? is the perpendicular component of Q with respect to c = 1p
N

1

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 17 / 36



Su�cient Conditions for Throughput Heavy-tra�c Optimal

(R1) If Q exists, i.e., the underline Markov chain is positive recurrent.

(R2) If E
h��Q

��2
i
 M, i.e., the second moments is bounded by a constant.

(R3) If E
h��Q?

��2
i
 K , which is independent of ✏. This is often called

steady-state collapse, which indicates that under heavy-tra�c, queue-length
vector concentrates around the line c.

How can we bound the moments?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 18 / 36



Su�cient Conditions for Throughput Heavy-tra�c Optimal

(R1) If Q exists, i.e., the underline Markov chain is positive recurrent.

(R2) If E
h��Q

��2
i
 M, i.e., the second moments is bounded by a constant.

(R3) If E
h��Q?

��2
i
 K , which is independent of ✏. This is often called

steady-state collapse, which indicates that under heavy-tra�c, queue-length
vector concentrates around the line c.

How can we bound the moments?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 18 / 36



A Very Useful Lemma

Lemma

For an irreducible aperiodic and positive Markov chain {X (t), t � 0} over a countable

state space X , which converges in distribution to X , and suppose V : X ! R+ is a

Lyapunov function. We define the T time slot drift of V at X as

�V (X ) := [V (X (t0 + T ))� V (X (t0))]I(X (t0) = X ),

where I(.) is the indicator function. Suppose for some positive finite integer T , the T

time slot drift of V satisfies the following conditions:

(C1) There exists an ⌘ > 0 and a � < 1 such that for any t0 = 1, 2, . . . and for all

X 2 X with V (X ) � �,

E [�V (X )|X (t0) = X ]  �⌘.

(C2) There exists a constant D < 1 such that for all X 2 X ,

P(|�V (X )|  D) = 1.

Then, there exist finite constants {M
r

, r 2 N} such that for each positive r ,

E
⇥
V (X )r

⇤
 M

r

, where M

r

are fully determined by ⌘, � and D.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 19 / 36



General Su�cient Conditions

Assuming bounded support of arrival and departure process, by exploiting the
useful lemma and properties of projection to a convex cone, we are able to give
su�cient condition to more general cases

(S1) If there exists a finite constant T1 and K1 > 0 and � > 0 such that for
all t0

E
"
t0+T1�1X

t=t0

hQ(t),A(t)� S(t)i|Q(t0) = Q

#
 �� kQk+ K1 (4)

holds, then the system is throughput optimal and has a stationary
distribution with all moments bounded.
(S2) If there exists a finite constant T2, and constants K2 > 0 and ⌘ > 0,
both independent of ✏ such that for all t0

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#
 �⌘ kQ?k+ K2 (5)

holds, then the moments of perpendicular component with respect to any
convex set C is bounded. (steady-state collapse to a convex set C)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 20 / 36



General Su�cient Conditions

Assuming bounded support of arrival and departure process, by exploiting the
useful lemma and properties of projection to a convex cone, we are able to give
su�cient condition to more general cases

(S1) If there exists a finite constant T1 and K1 > 0 and � > 0 such that for
all t0

E
"
t0+T1�1X

t=t0

hQ(t),A(t)� S(t)i|Q(t0) = Q

#
 �� kQk+ K1 (4)

holds, then the system is throughput optimal and has a stationary
distribution with all moments bounded.

(S2) If there exists a finite constant T2, and constants K2 > 0 and ⌘ > 0,
both independent of ✏ such that for all t0

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#
 �⌘ kQ?k+ K2 (5)

holds, then the moments of perpendicular component with respect to any
convex set C is bounded. (steady-state collapse to a convex set C)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 20 / 36



General Su�cient Conditions

Assuming bounded support of arrival and departure process, by exploiting the
useful lemma and properties of projection to a convex cone, we are able to give
su�cient condition to more general cases

(S1) If there exists a finite constant T1 and K1 > 0 and � > 0 such that for
all t0

E
"
t0+T1�1X

t=t0

hQ(t),A(t)� S(t)i|Q(t0) = Q

#
 �� kQk+ K1 (4)

holds, then the system is throughput optimal and has a stationary
distribution with all moments bounded.
(S2) If there exists a finite constant T2, and constants K2 > 0 and ⌘ > 0,
both independent of ✏ such that for all t0

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#
 �⌘ kQ?k+ K2 (5)

holds, then the moments of perpendicular component with respect to any
convex set C is bounded. (steady-state collapse to a convex set C)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 20 / 36



General Su�cient Conditions

Assuming bounded support of arrival and departure process, by exploiting the
useful lemma and properties of projection to a convex cone, we are able to give
su�cient condition to more general cases

(S1) If there exists a finite constant T1 and K1 > 0 and � > 0 such that for
all t0

E
"
t0+T1�1X

t=t0

hQ(t),A(t)� S(t)i|Q(t0) = Q

#
 �� kQk+ K1 (4)

holds, then the system is throughput optimal and has a stationary
distribution with all moments bounded.
(S2) If there exists a finite constant T2, and constants K2 > 0 and ⌘ > 0,
both independent of ✏ such that for all t0

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#
 �⌘ kQ?k+ K2 (5)

holds, then the moments of perpendicular component with respect to any
convex set C is bounded. (steady-state collapse to a convex set C)

Clearly, if the convex set is c = 1p
N

1, (S1) implies (R1-R2) and (S2) implies (R3).
Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 20 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 21 / 36



JBA in Homogeneous Servers

All the N servers have the same average serve rate µ.

The load balancer, under the JBA policy at each time-slot, randomly chose a
queue among the queues that have workload less than the average workload
at that time slot, and then forward all the incoming requests to that server.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 22 / 36



JBA in Homogeneous Servers

All the N servers have the same average serve rate µ.

The load balancer, under the JBA policy at each time-slot, randomly chose a
queue among the queues that have workload less than the average workload
at that time slot, and then forward all the incoming requests to that server.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 22 / 36



JBA in Homogeneous Servers

All the N servers have the same average serve rate µ.

The load balancer, under the JBA policy at each time-slot, randomly chose a
queue among the queues that have workload less than the average workload
at that time slot, and then forward all the incoming requests to that server.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 22 / 36



S1 is Satisfied

Let us first check (S1) by the choice T = 1:

E [hQ(t),A(t)� S(t)i|Q] = hQ,E [A|Q]i � hQ,µi

=
�⌃

L

LX

n=1

Q
n

� µ
NX

n=1

Q
n

= (
�⌃

N
� µ)

NX

n=1

Q
n

� (
�⌃

N
� �⌃

L
)

NX

n=1

� �

N

NX

n=L+1

Q
n

 � ✏

N
kQk1 � �⌃

N � L

N
(Q

L+1 � Q
L

)

 � ✏

N
kQk

(6)

assume Q1(t)  Q2(t)  · · ·  Q
L

(t)  Q⇤(t) < Q
L+1(t)  · · ·  Q

N

(t),
and Q⇤(t) = 1

N

P
Q

n

(t) is the average queue length.

S1 is satisfied, and hence JBA is throughput optimal

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 23 / 36



S2 is Satisfied

Let us turn to check (S2) with the line c as the projection direction:

E [hQ?(t),A(t)� S(t)i|Q(t) = Q]
(a)
=hQ?,E [A|Q]i � hQ?,µi
= hQ?,E [A|Q]i

=
�⌃

L

LX

n=1

(Q
n

� Q⇤)

= ��⌃

L

LX

n=1

|Q
n

� Q⇤|

 � �⌃

2N
kQ?k

 �µ

2
kQ?k

(7)

for all 0 < ✏  Nµ
2 . (a) follows hQ?, 1i = 0

S2 is verified and hence JBA is heavy-tra�c optimality

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 24 / 36



Theorems

Theorem
For any �⌃ in the interior of R, i.e., �⌃ < µ⌃, the JBA routing policy stabilizes the

system, and all the moments of the stationary distribution are bounded, i.e., there exist

finite constants {M
r

, r 2 N} such that E
h��Q

��r

i
 M

r

.

Theorem
Consider a set of load balancing system under JBA policy with the exogenous arrival

process {A(✏)
⌃ (t), t � 0}, parameterized by ✏ > 0. Then, each of these systems, the

expectation of the sum queue length in steady state is lower bounded by

E
"

NX

n=1

Q

(✏)
n

#
� ⇣(✏)

2✏
� K (8)

where ⇣(✏) = (�(✏)
⌃ )2 + ⌫2

⌃ + ✏2, K = NSmax
2

. Therefore, in the heavy-tra�c limit as ✏ # 0,

assuming the (�(✏)
⌃ )2 converges to a constant �2

⌃, we have

lim inf
✏#0

✏E
"

NX

n=1

Q

(✏)
n

#
� ⇣

2
, (9)

where ⇣ = �2
⌃ + ⌫2

⌃.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 25 / 36



Theorems (Cont’d)

Theorem
Consider a set of load balancing system with the exogenous arrival process

{A(✏)
⌃ (t), t � 0}, parameterized by ✏ > 0, such that the mean arrival rate is �(✏)

⌃ = µ⌃ � ✏

and variance is denoted as (�(✏)
⌃ )2. Under the JBA algorithm, {Q(✏)(t), t � 0} converges

in distribution to Q
(✏)
. Then, there exist finite constants {M

r

, r 2 N} which are

independent of ✏ such that for all r 2 N,

E
h���Q(✏)

?

���
i
 M

r

, (10)

for all system with 0 < ✏  Nµ
2
.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 26 / 36



Theorems (Cont’d)

Theorem
Consider a set of load balancing system with the exogenous arrival process

{A(✏)
⌃ (t), t � 0}, parameterized by ✏ > 0, such that the mean arrival rate is

�(✏)
⌃ = µ⌃ � ✏ and variance is denoted as (�(✏)

⌃ )2. Under the JBA algorithm,

{Q(✏)(t), t � 0} converges in distribution to Q
(✏)
. For each system with

0 < ✏  Nµ
2 , the steady state average queue length satisfies

E
"

NX

n=1

Q
(✏)
n

#
 ⇣(✏)

2✏
+ B

(✏)
, (11)

where ⇣(✏) is the same as in the lower bound, and B
(✏)

is o( 1✏ ), i.e.,

lim✏#0 ✏B
(✏)

= 0.

Therefore, assuming the variance (�(✏)
⌃ )2 converges to a constant �2

⌃, the upper
bound becomes

lim sup
✏#0

✏E
"

NX

n=1

Q
(✏)
n

#
 ⇣

2
(12)

where ⇣ = �2
⌃ + ⌫2⌃ is the same as in the lower bound. Hence, this upper bound

under heavy-tra�c limit coincides with the lower bound, which establishes the first
moment heavy-tra�c optimality of JBA algorithm.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 27 / 36



How about Random Load Balancing

Under random load balancing, we have A� S = � ✏
N

1

For (S1), we have E [hQ(t),A(t)� S(t)i|Q] = � ✏
N

kQk  � ✏
2N kQk

For (S2), we have E [hQ?(t),A(t)� S(t)i|Q(t) = Q] = 0 for all t

Consider steady-state collapse, random load balancing actually does no harm in
the sense that it would not incur any positive drift.

Can we utilize this fact to turn bad to good?

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 28 / 36



From 1 to any finite T

The load balancer uses JBA, Power of d, or JSQ every T time-slots, otherwise
just random routing.

For (S1), it is trivial to hold.

For (S2), by letting T2 = T , we have

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#

=
t0+T2�1X

t=t0

E [hQ?(t),A(t)� S(t)i|Q(t0) = Q]

(a)
=

t0+T2�1X

t=t0

E [E [hQ?(t),A(t)� S(t)i|Q(t)] |Q(t0) = Q]

= E [�⌘ kQ?(t
⇤)k |Q(t0) = Q]

 �⌘ kQ?(t0)k+ DT

(13)

where (a) follows from tower property of conditional expectation.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 29 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 30 / 36



JBA in Heterogeneous Servers

The N servers do not have the same average serve rate, each with µ
n

.

The load balancer, under the JBA policy at each time-slot, randomly with
probability proportional to the service rate µ

n

to chose a queue among the
queues that have workload less than the average workload at that time slot,
and then forward all the incoming requests to that server.

P(R
i

) =
µ
iP

iL

µ
i

if i  L (14)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 31 / 36



JBA in Heterogeneous Servers

The N servers do not have the same average serve rate, each with µ
n

.

The load balancer, under the JBA policy at each time-slot, randomly with
probability proportional to the service rate µ

n

to chose a queue among the
queues that have workload less than the average workload at that time slot,
and then forward all the incoming requests to that server.

P(R
i

) =
µ
iP

iL

µ
i

if i  L (14)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 31 / 36



JBA in Heterogeneous Servers

The N servers do not have the same average serve rate, each with µ
n

.

The load balancer, under the JBA policy at each time-slot, randomly with
probability proportional to the service rate µ

n

to chose a queue among the
queues that have workload less than the average workload at that time slot,
and then forward all the incoming requests to that server.

P(R
i

) =
µ
iP

iL

µ
i

if i  L (14)

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 31 / 36



JBA in Heterogeneous Servers (Cont’d)

Under the JBA load balancing, it can be shown that (S1) and (S2) still hold, i.e.,

For (S1), we have E [hQ(t),A(t)� S(t)i|Q]  �� kQk for some � > 0

For (S2), we have E [hQ?(t),A(t)� S(t)i|Q(t) = Q]  �⌘ kQ?(t)k for
some ⌘ > 0 independent of ✏

Under purely random load balancing with proportional probability, we have

For (S1), we have E [hQ(t),A(t)� S(t)i|Q]  �� kQk for some � > 0

For (S2), we have E [hQ?(t),A(t)� S(t)i|Q(t) = Q]  ✏ kQ?(t)k for all t

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 32 / 36



From 1 to any finite T

The load balancer uses JBA, Power of d, or JSQ every T time-slots, otherwise
just random routing with proportional probability over N servers.

For (S1), it is trivial to hold.

For (S2), by letting T2 = T , we have

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#

=
t0+T2�1X

t=t0

E [hQ?(t),A(t)� S(t)i|Q(t0) = Q]

=
t0+T2�1X

t=t0

E [E [hQ?(t),A(t)� S(t)i|Q(t)] |Q(t0) = Q]

 ((T � 1)✏� ⌘) kQ?(t0)k+ DT 2

 � 1

2⌘
kQ?(t0)k+ DT 2

(15)

for all 0 < ✏  ⌘
2T , hence smaller ✏ means a larger T !.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 33 / 36



Outline

1 Introduction and Motivation
Why do we need an e↵ective and fast cloud?
Load Balancing and Previous Works

2 Throughput and Heavy-tra�c optimality of General Load Balancing
Model, Challenges, Contributions and Key insights
Methodology and Su�cient Conditions
Homogeneous Servers
Heterogeneous Servers
Conclusions

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 34 / 36



Conclusions

Can we generalize existing load balancing algorithm?
I Yes, the proposed JBA policy

Do we really need sampling for each time-slot for heavy-tra�c
optimality?

I No, we can actually sampling every T slots whenever T ✏  ↵ is satisfied.

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 35 / 36



Thank you!

Q & A

Xingyu Zhou (OSU) Optimality of General Load Balancing October 24, 2016 36 / 36


	Introduction and Motivation
	Why do we need an effective and fast cloud?
	Load Balancing and Previous Works

	Throughput and Heavy-traffic optimality of General Load Balancing
	Model, Challenges, Contributions and Key insights
	Methodology and Sufficient Conditions
	Homogeneous Servers
	Heterogeneous Servers
	Conclusions


