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Cloud is everywhere in life

Source: https://www.skyhighnetworks.com/

Figure: Top 20 consumer cloud services in 2016

Question: What makes a good cloud service?
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An E↵ective and Fast Cloud

E↵ective: High utilization and throughput.

I It determines how many units of information an application can process in a
period of time.

I High throughput means the application can handle more number of concurrent
users.

Fast: Low delay and response time

I It determines how much time an application takes to return a request to users.
I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales
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I Low response time means a good user experience and also great profit for

companies.
I Examples1:

F Google: an half second increase in loading time drops tra�c by 20%
F Amazon: every 100ms of latency costs them 1% in sales

Question: How do we design an e↵ective and fast cloud system?
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Load Balancing in Cloud

Figure: A typical model in cloud system

Load balancing: Choose the right server(s) when requests coming.

I It is the key to optimize resource use, maximize throughput, reduce response
time in cloud system.

I It becomes more and more critical due to explosive increase in the number of
servers and tra�c in cloud system.
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Previous Works

Throughput analysis is relatively easy, however, delay is really di�cult for exact
analysis. Two alternatives are asymptotic analysis:

Large system limit: the number of servers N goes to infinity.

I Task arrival: average-delay of Join-the-shortest-queue (JSQ), Power-of-d and
Join-the-idle-queue (JIQ)[Mitzenmacher’96,’16, Lu’11]

I Job arrival: Batch sampling is introduced to reduce sampling overhead.
Srikant’15, Ousterhout’13]

Heavy tra�c limit: the utilization of server ⇢ goes to 1.

I Brownian motion condition: Sample-path heavy-tra�c optimality in scaled
time over a finite time interval of JSQ, power-of-d[Foschini et al,’78,
Whiting’16]

I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
power-of-d. [Erylimaz’13, Maguluri’12]
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I Lyapunov Drift condition: First moment heavy-tra�c optimality of JSQ,
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Questions: Can we generalize existing load balancing algorithm?

Question: Do we really need sampling for each arrival?
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System Model and Assumptions

The exogenous arrival process A⌃(t) with mean rate �⌃ is i.i.d and also independent
of service, queue length, and routing decision. A⌃(t)  Amax < 1 for all t � 0

Each service process S
n

(t) with mean rate µ
n

is i.i.d and also independent of other
service, arrival, queue length, and routing decision. S

n

(t)  Smax < 1 for all t � 0
and all n 2 {1, 2, . . . ,N}, and S⌃(t) =

P
S

n

(t) is the hypothetical total service with
mean µ⌃ =

P
µ
n

. ✏ = µ⌃ � �⌃ indicates how close the arrival rate to the boundary.

Requests cannot be removed from server to server.

Queue length dynamic is

Q

n

(t + 1) = [Q
n

(t) + A

n

(t)� S

n

(t)]+

= Q

n

(t) + A

n

(t)� S

n

(t) + U

n

(t).
(1)
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Definitions of Throughput and Heavy-tra�c Optimal

Definition (Throughput Optimality)

In general, a load balancing policy is said to be throughput optimal if it can
stabilize any set of arrival rates which can be stabilized by another policy. In our
model, a load balancing policy is throughput optimal if it can stabilize any
exogenous rate �⌃ < µ⌃.

Definition (Equivalent Single Queue)

A single queue process q(t) is said to be the equivalent single queue of the load
balancing system if a(t) = A⌃(t) and s(t) = S⌃(t). Clearly, q(t) st

P
Q

n

(t)

Definition (Heavy-tra�c Optimality)

A load balancing policy is said to be heavy-tra�c optimal if the expected
steady-state sum queue length is asymptoticly the same as the equivalent single
queue when the arrival rate approaches to the capacity boundary.
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Main Contributions

We give su�cient conditions for a policy to be throughput and heavy-tra�c
optimal under certain assumptions.

We introduce a new load balancing policy, called Join-Below-Average (JBA),
which is both throughput and heavy-tra�c optimal. Instead of joining the
shortest queue, it needs only to randomly selects a queue with queue length
below average to join.

I it is often easy to obtain the sum queue length of a system, and hence the
average queue length.

I sometimes, it is prohibited for a request to join the shortest queue due to data
locality.

We show that a class of load balancing policies is throughput and
heavy-tra�c optimal.

I we need only use any ‘good’ load balancing policy once every T time slots, for
any finite T , and random routing in other time slots to achieve throughput
and heavy-tra�c optimality

I The ‘good’ policy can be any one time-slot sampling heavy tra�c optimal
policy, such as JBA, Power-of-d, and JSQ depending on di↵erent situations.
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Key Insights

We know that purely random routing is not heavy-tra�c optimal, but, it is
not so bad as we might think.

I For homogeneous servers, it actually does no harm (of course no good) to
heavy-tra�c optimality.

I For heterogeneous servers, the harm it does will tend to zero as tra�c
becomes more heavy.

As the tra�c gets heavier, it actually becomes more and more easy to
achieve heavy-tra�c optimality.

I The upper bound on the sampling interval T gets larger when the tra�c
becomes heavier.

I In some sense, load balancing becomes easier (kind of counterintuitive, but
can be explained) when tra�c becomes heavier.
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Main Ideas

Choose the Lyapunov function Z (Q) , kQk21 =
⇣P

N

n=1 Qn

⌘2

, and set the

mean drift to zero in steady-state to get bounds.

I (R1) It requires the existence of a stationary distribution Q.
I (R2) It requires bounded moments of the stationary distribution to avoid the

situation 1�1, i.e, E
h��Q

��2
i
 M.

Assume (R1) and (R2) satisfy, we obtain the expected sum queue length in
steady-state
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NX
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Q
(✏)
n
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⇣(✏)
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+ E

⇥��Q(t + 1)
��
1

��U(t)
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⇤
� E

h��U(t)
��2
1

i
(2)

By letting N = 1, expected queue length for the corresponding Equivalent
Single Queue is simply

✏E
h
q(✏)

i
=

⇣(✏)

2
+ E [q(t + 1)u(t)]� E

⇥
u2
⇤

(3)
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Main Ideas (Cont’d)

Foe the equivalent single queue, by exploiting the most important equation
q(t + 1)u(t) = 0 and the fact E

⇥
u

2
⇤
is o(✏), we have
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2
� o(✏)

Foe the N server, by exploiting the equation Q
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in which Q? is the perpendicular component of Q with respect to c = 1p
N

1
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Su�cient Conditions for Throughput Heavy-tra�c Optimal

(R1) If Q exists, i.e., the underline Markov chain is positive recurrent.

(R2) If E
h��Q

��2
i
 M, i.e., the second moments is bounded by a constant.

(R3) If E
h��Q?

��2
i
 K , which is independent of ✏. This is often called

steady-state collapse, which indicates that under heavy-tra�c, queue-length
vector concentrates around the line c.

How can we bound the moments?
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A Very Useful Lemma

Lemma

For an irreducible aperiodic and positive Markov chain {X (t), t � 0} over a countable

state space X , which converges in distribution to X , and suppose V : X ! R+ is a

Lyapunov function. We define the T time slot drift of V at X as

�V (X ) := [V (X (t0 + T ))� V (X (t0))]I(X (t0) = X ),

where I(.) is the indicator function. Suppose for some positive finite integer T , the T

time slot drift of V satisfies the following conditions:

(C1) There exists an ⌘ > 0 and a � < 1 such that for any t0 = 1, 2, . . . and for all

X 2 X with V (X ) � �,

E [�V (X )|X (t0) = X ]  �⌘.

(C2) There exists a constant D < 1 such that for all X 2 X ,

P(|�V (X )|  D) = 1.

Then, there exist finite constants {M
r

, r 2 N} such that for each positive r ,

E
⇥
V (X )r

⇤
 M

r

, where M

r

are fully determined by ⌘, � and D.
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General Su�cient Conditions

Assuming bounded support of arrival and departure process, by exploiting the
useful lemma and properties of projection to a convex cone, we are able to give
su�cient condition to more general cases

(S1) If there exists a finite constant T1 and K1 > 0 and � > 0 such that for
all t0

E
"
t0+T1�1X

t=t0

hQ(t),A(t)� S(t)i|Q(t0) = Q

#
 �� kQk+ K1 (4)

holds, then the system is throughput optimal and has a stationary
distribution with all moments bounded.
(S2) If there exists a finite constant T2, and constants K2 > 0 and ⌘ > 0,
both independent of ✏ such that for all t0

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#
 �⌘ kQ?k+ K2 (5)

holds, then the moments of perpendicular component with respect to any
convex set C is bounded. (steady-state collapse to a convex set C)
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convex set C is bounded. (steady-state collapse to a convex set C)
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General Su�cient Conditions

Assuming bounded support of arrival and departure process, by exploiting the
useful lemma and properties of projection to a convex cone, we are able to give
su�cient condition to more general cases

(S1) If there exists a finite constant T1 and K1 > 0 and � > 0 such that for
all t0

E
"
t0+T1�1X

t=t0

hQ(t),A(t)� S(t)i|Q(t0) = Q

#
 �� kQk+ K1 (4)

holds, then the system is throughput optimal and has a stationary
distribution with all moments bounded.
(S2) If there exists a finite constant T2, and constants K2 > 0 and ⌘ > 0,
both independent of ✏ such that for all t0

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#
 �⌘ kQ?k+ K2 (5)

holds, then the moments of perpendicular component with respect to any
convex set C is bounded. (steady-state collapse to a convex set C)

Clearly, if the convex set is c = 1p
N

1, (S1) implies (R1-R2) and (S2) implies (R3).
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JBA in Homogeneous Servers

All the N servers have the same average serve rate µ.

The load balancer, under the JBA policy at each time-slot, randomly chose a
queue among the queues that have workload less than the average workload
at that time slot, and then forward all the incoming requests to that server.
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S1 is Satisfied

Let us first check (S1) by the choice T = 1:

E [hQ(t),A(t)� S(t)i|Q] = hQ,E [A|Q]i � hQ,µi

=
�⌃

L

LX

n=1

Q
n

� µ
NX

n=1

Q
n

= (
�⌃

N
� µ)

NX

n=1

Q
n

� (
�⌃

N
� �⌃

L
)

NX

n=1

� �

N

NX

n=L+1

Q
n

 � ✏

N
kQk1 � �⌃

N � L

N
(Q

L+1 � Q
L

)

 � ✏

N
kQk

(6)

assume Q1(t)  Q2(t)  · · ·  Q
L

(t)  Q⇤(t) < Q
L+1(t)  · · ·  Q

N

(t),
and Q⇤(t) = 1

N

P
Q

n

(t) is the average queue length.

S1 is satisfied, and hence JBA is throughput optimal
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S2 is Satisfied

Let us turn to check (S2) with the line c as the projection direction:

E [hQ?(t),A(t)� S(t)i|Q(t) = Q]
(a)
=hQ?,E [A|Q]i � hQ?,µi
= hQ?,E [A|Q]i

=
�⌃

L

LX

n=1

(Q
n

� Q⇤)

= ��⌃

L

LX

n=1

|Q
n

� Q⇤|

 � �⌃

2N
kQ?k

 �µ

2
kQ?k

(7)

for all 0 < ✏  Nµ
2 . (a) follows hQ?, 1i = 0

S2 is verified and hence JBA is heavy-tra�c optimality
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Theorems

Theorem
For any �⌃ in the interior of R, i.e., �⌃ < µ⌃, the JBA routing policy stabilizes the

system, and all the moments of the stationary distribution are bounded, i.e., there exist

finite constants {M
r

, r 2 N} such that E
h��Q

��r

i
 M

r

.

Theorem
Consider a set of load balancing system under JBA policy with the exogenous arrival

process {A(✏)
⌃ (t), t � 0}, parameterized by ✏ > 0. Then, each of these systems, the

expectation of the sum queue length in steady state is lower bounded by

E
"

NX

n=1

Q

(✏)
n

#
� ⇣(✏)

2✏
� K (8)

where ⇣(✏) = (�(✏)
⌃ )2 + ⌫2

⌃ + ✏2, K = NSmax
2

. Therefore, in the heavy-tra�c limit as ✏ # 0,

assuming the (�(✏)
⌃ )2 converges to a constant �2

⌃, we have

lim inf
✏#0

✏E
"

NX

n=1

Q

(✏)
n

#
� ⇣

2
, (9)

where ⇣ = �2
⌃ + ⌫2

⌃.
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Theorems (Cont’d)

Theorem
Consider a set of load balancing system with the exogenous arrival process

{A(✏)
⌃ (t), t � 0}, parameterized by ✏ > 0, such that the mean arrival rate is �(✏)

⌃ = µ⌃ � ✏

and variance is denoted as (�(✏)
⌃ )2. Under the JBA algorithm, {Q(✏)(t), t � 0} converges

in distribution to Q
(✏)
. Then, there exist finite constants {M

r

, r 2 N} which are

independent of ✏ such that for all r 2 N,

E
h���Q(✏)

?

���
i
 M

r

, (10)

for all system with 0 < ✏  Nµ
2
.
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Theorems (Cont’d)

Theorem
Consider a set of load balancing system with the exogenous arrival process

{A(✏)
⌃ (t), t � 0}, parameterized by ✏ > 0, such that the mean arrival rate is

�(✏)
⌃ = µ⌃ � ✏ and variance is denoted as (�(✏)

⌃ )2. Under the JBA algorithm,

{Q(✏)(t), t � 0} converges in distribution to Q
(✏)
. For each system with

0 < ✏  Nµ
2 , the steady state average queue length satisfies

E
"

NX

n=1

Q
(✏)
n

#
 ⇣(✏)

2✏
+ B

(✏)
, (11)

where ⇣(✏) is the same as in the lower bound, and B
(✏)

is o( 1✏ ), i.e.,

lim✏#0 ✏B
(✏)

= 0.

Therefore, assuming the variance (�(✏)
⌃ )2 converges to a constant �2

⌃, the upper
bound becomes

lim sup
✏#0

✏E
"

NX

n=1

Q
(✏)
n

#
 ⇣

2
(12)

where ⇣ = �2
⌃ + ⌫2⌃ is the same as in the lower bound. Hence, this upper bound

under heavy-tra�c limit coincides with the lower bound, which establishes the first
moment heavy-tra�c optimality of JBA algorithm.
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How about Random Load Balancing

Under random load balancing, we have A� S = � ✏
N

1

For (S1), we have E [hQ(t),A(t)� S(t)i|Q] = � ✏
N

kQk  � ✏
2N kQk

For (S2), we have E [hQ?(t),A(t)� S(t)i|Q(t) = Q] = 0 for all t

Consider steady-state collapse, random load balancing actually does no harm in
the sense that it would not incur any positive drift.

Can we utilize this fact to turn bad to good?
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From 1 to any finite T

The load balancer uses JBA, Power of d, or JSQ every T time-slots, otherwise
just random routing.

For (S1), it is trivial to hold.

For (S2), by letting T2 = T , we have

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#

=
t0+T2�1X

t=t0

E [hQ?(t),A(t)� S(t)i|Q(t0) = Q]

(a)
=

t0+T2�1X

t=t0

E [E [hQ?(t),A(t)� S(t)i|Q(t)] |Q(t0) = Q]

= E [�⌘ kQ?(t
⇤)k |Q(t0) = Q]

 �⌘ kQ?(t0)k+ DT

(13)

where (a) follows from tower property of conditional expectation.
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JBA in Heterogeneous Servers

The N servers do not have the same average serve rate, each with µ
n

.

The load balancer, under the JBA policy at each time-slot, randomly with
probability proportional to the service rate µ

n

to chose a queue among the
queues that have workload less than the average workload at that time slot,
and then forward all the incoming requests to that server.

P(R
i

) =
µ
iP

iL

µ
i

if i  L (14)
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JBA in Heterogeneous Servers (Cont’d)

Under the JBA load balancing, it can be shown that (S1) and (S2) still hold, i.e.,

For (S1), we have E [hQ(t),A(t)� S(t)i|Q]  �� kQk for some � > 0

For (S2), we have E [hQ?(t),A(t)� S(t)i|Q(t) = Q]  �⌘ kQ?(t)k for
some ⌘ > 0 independent of ✏

Under purely random load balancing with proportional probability, we have

For (S1), we have E [hQ(t),A(t)� S(t)i|Q]  �� kQk for some � > 0

For (S2), we have E [hQ?(t),A(t)� S(t)i|Q(t) = Q]  ✏ kQ?(t)k for all t
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From 1 to any finite T

The load balancer uses JBA, Power of d, or JSQ every T time-slots, otherwise
just random routing with proportional probability over N servers.

For (S1), it is trivial to hold.

For (S2), by letting T2 = T , we have

E
"
t0+T2�1X

t=t0

hQ?(t),A(t)� S(t)i|Q(t0) = Q

#

=
t0+T2�1X

t=t0

E [hQ?(t),A(t)� S(t)i|Q(t0) = Q]

=
t0+T2�1X

t=t0

E [E [hQ?(t),A(t)� S(t)i|Q(t)] |Q(t0) = Q]

 ((T � 1)✏� ⌘) kQ?(t0)k+ DT 2

 � 1

2⌘
kQ?(t0)k+ DT 2

(15)

for all 0 < ✏  ⌘
2T , hence smaller ✏ means a larger T !.
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Conclusions

Can we generalize existing load balancing algorithm?
I Yes, the proposed JBA policy

Do we really need sampling for each time-slot for heavy-tra�c
optimality?

I No, we can actually sampling every T slots whenever T ✏  ↵ is satisfied.
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Thank you!

Q & A
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