Kernelized Bandits with
Distributed Biased Feedback

Fengjiao Li' Xingyu Zhou? Bo JI

1Virginia Tech 2Wayne State University

Sequential Decision Making

Black-box optimization

J(x)

Sequential Decision Making

Black-box optimization

J(x)

Sequential Decision Making

Black-box optimization

Sequential Decision Making

Black-box optimization

Sequential Decision Making

Black-box optimization

Sequential Decision Making

Black-box optimization

Sequential Decision Making

Black-box optimization

T
Minimize R(T) =)’ f(x*) — f(x)
=1

Sequential Decision Making

Black-box optimization

J(x)

Bayesian Optimization
(BO)

« flies in Reproducing Kernel Hilbert Space (RKHS)

 RKHS approximates any continuous function

* Include linear function as a special case

e Bounded RKHS norm, i.e., smoothness

Any
assumptions on f ?

T
Minimize R(T) = Z FOe%) = f(x,)
=\

General Algorithm Design

(X5 ¥)

Online collected data up to time ¢

What’s the model?

General Algorithm Design

Dual form of least-square regression
Dose not depend on y!

Online collected data up to time ¢

What’s the model?

GP(0,k(x, x"))
GP(u,, k(x,x'))

Only used for algorithm design!

N (0,4)

Closed-form posterior update

General Algorithm Design

General Algorithm Design

— [
f, ~ GP(u,, k,) ’

General Algorithm Design

— [
f, ~ GP(u,, k,) ’

What If...

f1s an expectation

Stochastic optlmlzatlon

/ f(x) —F(x u)

Each f, is a sample from
GP with mean f

15

How to apply BO
Exam ples (kernel bandits) in this

Policy making, cellular config and more...

case?

Ae

J(x) = E,F(x,u)

U Base station config optimizes expected performance

At
n QN J3(x,)
ﬁ ~ fs(-xt)
;N J1(x) =

a5 f2(xt)

~ f4(x)

Option I: Aggregate All (ermel bandis) in this

n ?
Impractical... =

J(x) =

Policy maximizes expected user satisfaction { }

i
11l

&

A A

3

Y H() + 1

4 B

A A
Large amount of comm.
’ * High communication cost ’

* Not everyone will share their feedback

Intuition&Fact Box

e This is similar to SGD for Stochastic Optimization

Opti on I I : Sa m ple One * One-pass over the dataset to have unbiased sample
GP-UCB/TS with a larger noise

J(x) =

i
11l

&

Policy maximizes expected user satisfaction

Three Limitations
* Need O(T) fresh users

. Poor scalability due to O(T°) time complexity
e User’s privacy needs to be protected

s there any computation/communication efficient algorithm that interacts with only o(7')

users while still guaranteeing sub-linear regret and privacy?

Contribution

Main Results f(x) = E,F(x, u)
i
11l

&

Policy maximizes expected user satisfaction

" A - X

1. Propose a distributed phase-elimination-type BO algorithm with user sampling and batching
or erne

2. Involve with only O(T%) unique users, a € (0,1] —user sampling parameter

3. Incur (sub-linear) regret O(T %7 + \/77T'), computation O(yéf log T + y;T%), communication O(y;1%)

4. Also establish regret performance under different trust models — privacy “for free” in certain models
21

Our Approach

A Phase-elimination

* Doubling phase length
e Eliminate poor actions/arms at end of each phase
e Can be easily extended to infinite domain setting

Policy maximizes expected user satisfaction

&

Eliminate poor actions
Obtain a new active set

22

Our Approach

A User Sampling

 Each phase samples a new set of users

* Those users are fixed during the phase
« Each phase [, =2% q € (0,1]

Policy maximizes expected user satisfaction
Need new users, otherwise the feedback is purely biased

&

™ |
0
al

23

Our Approach

A Action Selection
&

* Rarely switching via batching

Policy maximizes expected user satisfaction

/

- Batching: play the same arm multiple times

~ A o A
Q:

D D D

- Phase [/ >

24

Our Approach

A Action Selection
&

e Rarely switching via batching
« Maximum variance reduction

Policy maximizes expected user satisfaction

/

i How to choose each action for each batch?

Can we mimic linear bandit using
G-optimal design here?

~ A o A
a

D D D

Not easy, we have infinite-dimension
INn kernel bandits

- Phase [/ -

25

Our Approach

A Action Selection
&

Policy maximizes expected user satisfaction

* Rarely switching via batching
 Max-variance reduction principle

A

]]
]]]]
]]]]
]]]]
]]] [] " E BN
]]]]
]]]]
]]]]
]]] n
]]]]
—_— n s n n S ™
° 9 ™ 9 ™ LE ™ 9 n
]]] N 4]
= n n n n
- - . W N h .
]]]]
]]]]
]]]]
]
]
]
]
]

@: f: I
. : _— How to choose each action for each batch?
i

Inspired by [Vak21], we use
max-variance reduction

L 2(x) = T y
: |1. Only use the data in batch [|/ O, (x) — k(X, X’) — kl(X) (Kl + /U) kl(x’)
: [2. Merge same actions together| :

< Phase [-

26

Our ApproaCh - Action Selection

* Rarely switching via batching

@ Max-variance reduction principle
~>

o

Inspired by [Vak21], we use
max-variance reduction

: |1. Only use the data in batch [|/ (x) = k(x,x") — kl(x)m kl(x)
: [2. Merge same actions together| :

) Phase /

. Reduce dim to H,, which is O(yT)

Our Approach
.l -

* Reduce computation complexity
 Control the communication cost

A Action Selection

* Rarely switching via batching

@ Max-variance reduction principle
~>

One Stone, Two Birds

K Each element is| . :
’ average reward ﬁ
for each action | = & : Inspired by [Vak21], we use
' . ™ i Max-variance reduction
LT o) = k) = ko JK AD k)
H, L Phase [

of batches in phase [
o8 Reduce dim to H}, which is O(yT)

Our ApproaCh . Arm Elimination

e Standard UCB and LCB comparison
e With proper confidence bonus

Each element is
average reward

for each action | D, =1x€D;: pu(x)+wlx) > rglzgc w(b) —w(b)} :
. eD, E

< Phase [/ .

of batches in phase [
29

Theoretical Results

Intuition&Fact Box
« GP-UCB achieves O(yTﬁ) regret bound

« yr — kernel-dependent, intrinsic dimensionality

Performance Guarantees + Linear kernel: O(d log T'), recover linear bandits

Non-private ve rSion . Gaussian kernel (SE): logt!(T)

. Time complexity O(T?) for GP-UCB

Remark: comparisons with GP-UCB

Theorem 1

There exists proper parameter choices of our algorithm such that it enjoys

. Regret — O(T'™%* + \/77T) — thanks to phase-elimination 1. vs. @(},Tﬁ) — sub-optimal
. Total number of users — O(T%) — thanks to user reuse 2. vs. O(T)
. Computation complexity — O(y;T%) — thanks to batching and merging 3. vs. O(T°) — poor scalability
. Communication cost — O(y,;1T%) — thanks to batching and merging 4. vs. O(T)

Compare with prior work

1. Most related work is our prior work on linear bandit [LZJ’22] — our results include it as a special case
2. Experimental design for action selection in kernel bandits [CJK21] — our selection is much simpler without additional estimator
3. Zero-order non-convex stochastic opt.[BG18] — our metric is total regret rather than convergence rate

Privacy Protection

Differential Privacy :

Definition. If for any two neighboring Policy maximizes expected user satisfaction

datasets D and D’, and any outcome E . « S TTEEee~LlLL
PM(D) e £) <e‘PMD')e E)+ 6 ! '
Then, M satisfies (e,)-DP ; < 4
— DP means that outputs are “close” In . xl
orobabllity on two neighlboring datasets

Differential Privacy 101

&

Key components:
1. What are the neighboring datasets?
— the identity for protection Each element is

5 average reward : :
2. What arg the outputs’ tor each action i D, = {x €D, ux)+w(x) > max u(b) — w(b)}
— the view of adversary : :

_
—
| B8

beD,

Key properties: -

1. Composition, privacy loss adds up
2. Post-processing, immune to further > >

processing if data is not touched H, ’ Phase / >
of batches in phase [

33

Differential Prlvacy

Central model

Neighboring Dataset & Output

* Two user sequences differing in one
* All action outputs of the central agent

Differential Privacy 201

Gaussian mechanism for private sum of /, bounded vectors

D Iffe re ntl al Prlva cy i.e., § is the private sum of Z ¥; under (€, 0)-DP
Central model “ “
Trusted

@ L?log(1/6)
" .

Neighboring Dataset & Output

* Two user sequences differing in one
* All action outputs of agents

Those outputs are “indistinguishable”

Each element is under two neighboring user sequences

average reward
for each action

) Phase / :

of batches in phase [
35

Differential Privacy .
Untrusted @

Local model

Neighboring Dataset & Output

 Each user’s own output neighboring vector
* Local randomizer’s output

Differential Privacy 101

Post-processing, immune to further processing
f data is not touched
— local implies central model

Noise will be too much :(A

4

e

\

Automatic private by post-processing

Phase [/ >

of batches in phase [
36

Differential Privacy 301

* Shuffle DP leverages additional randomness in the

Differential Privacy

 Same untrusted agent as local model

ShUﬁle mOdel * Huge improvement of utility

Neighboring Dataset & Output

* Two user sequences differing in one
* All inputs of the central agent

L 11|
Q ,{ |—I I—I By post-processing, these are “indistinguishable” also
: ' L]

« Phase [/ -

Recall

. Our non-private regret is O(T'~%? + \/v7T)

 One stone, two birds

Performance Guarantees e s

private VerSiOn Communication

 Gaussian noise depends on the vector dimension

Theorem
There exists proper parameter choices of our algorithm such that it is (€, 0)-DP with regret

log(1/8)y; T~

€

~

1. Central model — O T'=%*+

Privacy “for-free”

~

1—al? e The additional privacy cost is lower order term
2. Localmodel — O T +

* Thanks to our batching so that dim is controlled
€ * This shares similar spirit as DP-SCO

~/

10g3/2(1/5)yTT1_“ _ Central and shuffler model: O

€

-

Our batching (lazy update) and merging enable us to

~/

3. Shuffle model — O | T!1-%24+

One Stone, Three Birds

1. Achieve the state-of-the-art time complexity —even for standard BO setting
2. Keep our communication cost in control
3. Keep our privacy noise in control

Thank you!

