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Black-box optimization

Black-box, no gradient information

No convexity
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Observation: yt = f(xt) + ηt

Black-box optimization

x3
Minimize R(T) =

T

∑
t=1

f(x*) − f(xt)

x2x1



Sequential Decision Making

9

x

f(x)

x1

Black-box optimization

x2
Minimize R(T) =

T

∑
t=1

f(x*) − f(xt)

Any 
assumptions on  ? f

•  lies in Reproducing Kernel Hilbert Space (RKHS)


• RKHS approximates any continuous function

• Include linear function as a special case

• Bounded RKHS norm, i.e., smoothness

f

x3

Bayesian Optimization 
(BO)



General Algorithm Design

Online collected data up to time t
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General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

What’s the model? 

x

f(x)

x1 x2
x3

Gaussian Process 
Surrogate Model

GP(0,k(x, x′ ))

𝒩(0,λ)
Dt GP(μt, kt(x, x′ ))Only used for algorithm design!

Intuition&Fact Box
•  - reward col-vector


•  —  matrix


•  


•  — updated mean 

•  - updated cov

Yt = [y1, y2, …, yT]⊤

Kt = [k(u, v)]u,v∈Dt
t × t

kt(x) = [k(x1, x), …, k(xt, x)]⊤

μt(x) = kt(x)⊤(Kt + λI)−1Yt

kt(x, x′ ) = k(x, x′ ) − kt(x)⊤(Kt + λI)−1kt(x′ )
Dose not depend on !y

Closed-form posterior update

Dual form of least-square regression



General Algorithm Design

Online collected data up to time t

(x1, y1)
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μt + βtσt

μt
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x

f(x)
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Gaussian Process 
Surrogate Model
GP(μt, kt(x, x′ ))

w.h.p.  [CG’17]| f(x) − μt(x) | ≤ βtσt(x), ∀x, t



General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

f(x)

x

f(x)

x1 x2 x3

μt + βtσt

μt

μt − βtσt

x

f(x)

x1 x2 x3

Gaussian Process 
Surrogate Model
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ft ∼ GP(μt, kt)

xt = arg max ft(x)



General Algorithm Design

Online collected data up to time t

(x1, y1)
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f(x)
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μt + βtσt

μt

μt − βtσt

x

f(x)

x1 x2 x3

Gaussian Process 
Surrogate Model
GP(μt, kt(x, x′ ))

GP-UCB 
ft = μt + βtσt

GP-TS 
ft ∼ GP(μt, kt)

xt = arg max ft(x)

Intuition&Fact Box
• Achieve  regret bound 


•  — kernel-dependent, intrinsic dimensionality


• Linear kernel: , recover linear bandits


• Gaussian kernel (SE):  


• Time complexity 


• Each GP update  using rank-1 update

Õ(γT T )
γT

O(d log T )
logd+1(T )

O(T3)
O(t2)



What if…
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 is an expectationf

x

f(x) = 𝔼uF(x, u)

Stochastic optimization

 fu(x) := F(x, u)

x*

Related Area
• Zero-order non-convex stochastic opt.

• Different assumptions and metrics


• Without Lipschitz

• Total regret vs. convergence rate

…
…

.

…
…

.

Each  is a sample from 

 with mean 

fu
GP f



Examples
Policy making, cellular config and more…

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

∼ f1(xt) ∼ f2(xt)

∼ f3(xt)

∼ f4(xt)

∼ f5(xt)

∼ f1(xt) ∼ f2(xt)

∼ f3(xt)

∼ f4(xt)

∼ f5(xt)

How to apply BO 
(kernel bandits) in this 

case?



Option I: Aggregate All
Impractical…

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

f1(xt) + η
f2(xt) + η

f1(xt) + η
f2(xt) + η

Large amount of comm.
• High communication cost

• Not everyone will share their feedback

How to apply BO 
(kernel bandits) in this 

case?



Option II: Sample One
GP-UCB/TS with a larger noise

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

f1(xt) + η f1(xt) + η

Intuition&Fact Box
• This is similar to SGD for Stochastic Optimization


• One-pass over the dataset to have unbiased sample

Three Limitations
• Need  fresh users 
• Poor scalability due to  time complexity 
• User’s privacy needs to be protected

O(T )
O(T3)



Option II: Sample One
GP-UCB/TS with larger noise

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

f1(xt) + η f1(xt) + η

Three Limitations
• Need  fresh users

• Poor scalability due to  time complexity

• User’s privacy needs to be protected

O(T )
O(T3)

Intuition&Fact Box
• This is similar to SGD for Stoc. Optimization


• One-pass over the dataset to have unbiased sample

Is there any computation/communication efficient algorithm that interacts with only  
users while still guaranteeing sub-linear regret and privacy? 

o(T)
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Main Results
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1. Propose a distributed phase-elimination-type BO algorithm with user sampling and batching


2. Involve with only  unique users,  —user sampling parameter


3. Incur (sub-linear) regret , computation , communication 


4. Also establish regret performance under different Differential Privacy (DP) trust models — privacy “for free” in certain models

O(Tα) α ∈ (0,1]

Õ(T1−α/2 + γTT) O(γ4
T log T + γTTα) O(γTTα)

Policy maximizes expected user satisfaction

x

f(x) = 𝔼uF(x, u)

x*

Reminder: log order 

for SE kernel



Our Approach
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Policy maximizes expected user satisfaction

T

Phase-elimination 
• Doubling phase length

• Eliminate poor actions/arms at end of each phase

• Can be easily extended to infinite domain setting

Eliminate poor actions

Obtain a new active set



Our Approach
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Policy maximizes expected user satisfaction

T

User Sampling
• Each phase samples a new set of users

• Those users are fixed during the phase

• Each phase , , l |Ul | = 2αl α ∈ (0,1]

Need new users, otherwise the feedback is purely biased



Our Approach
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Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

Phase l

x1 xh… … xHl

Batching: play the same arm multiple times



Our Approach
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Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

How to choose each action for each batch?

Can we mimic linear bandit using  
G-optimal design here? 

Not easy, we have infinite-dimension  
in kernel bandits

Action Selection

• Rarely switching via batching
• Maximum variance reduction



Our Approach
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Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

• Max-variance reduction principle

x1 xh

Phase l

… … xHl

How to choose each action for each batch?

Inspired by [Vak21], we use  
max-variance reduction 

σ2
l (x) = k(x, x′ ) − kl(x)⊤(Kl + λI)−1kl(x′ )1. Only use the data in batch 


2. Merge same actions together
l
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Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

• Max-variance reduction principle

x1 xh

Phase l

… … xHl

Inspired by [Vak21], we use  
max-variance reduction 

σ2
l (x) = k(x, x′ ) − kl(x)⊤(Kl + λI)−1kl(x′ )

Reduce dim to , which is Hl O(γT)

1. Only use the data in batch 

2. Merge same actions together

l



Our Approach
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Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

• Max-variance reduction principle

x1 xh

Phase l

… … xHl

Inspired by [Vak21], we use  
Max-variance reduction 

σ2
l (x) = k(x, x′ ) − kl(x)⊤(Kl + λI)−1kl(x′ )

Reduce dim to , which is Hl O(γT)

Each element is

average reward 

for each action

Hl
# of batches in phase l

…
…

One Stone, Two Birds

• Reduce computation complexity 

• Control the communication cost



Our Approach
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Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward 

for each action

Hl
# of batches in phase l

Arm Elimination

• Standard UCB and LCB comparison

• With proper confidence bonus

Dl+1 = {x ∈ Dl : μl(x) + wl(x) ≥ max
b∈Dl

μl(b) − wl(b)}

Two-level of uncertainty:

User and action



Theoretical Results



Non-private version
Performance Guarantees

 Theorem 1 
There exists proper parameter choices of our algorithm such that it enjoys 

1. Regret  —  

2. Total number of users —  
3. Computation complexity —  

4. Communication cost — 

Õ(T1−α/2 + γTT)

O(Tα)
O(γTTα)

O(γTTα)

Remark: comparisons with GP-UCB

1. vs.  — sub-optimal 

2. vs.    
3. vs.  — poor scalability 
4. vs.  

Õ(γT T )
O(T )
O(T3)
O(T )

Intuition&Fact Box
• GP-UCB achieves  regret bound 


•  — kernel-dependent, intrinsic dimensionality


• Linear kernel: , recover linear bandits


• Gaussian kernel (SE):  


• Time complexity  for GP-UCB

Õ(γT T )
γT

O(d log T )
logd+1(T )

O(T3)

Compare with prior work

1. Most related work is our prior work on linear bandit [LZJ’22] — our results include it as a special case

2. Experimental design for action selection in kernel bandits [CJK21] — our selection is much simpler without additional estimator

3. Zero-order non-convex stochastic opt.[BG18] — our metric is total regret rather than convergence rate

— thanks to phase-elimination 

— thanks to user reuse 
— thanks to batching and merging 

— thanks to batching and merging 



Privacy Protection



Differential Privacy
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Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward 

for each action

Hl
# of batches in phase l

Dl+1 = {x ∈ Dl : μl(x) + wl(x) ≥ max
b∈Dl

μl(b) − wl(b)}

Two-level of uncertainty:

User and action

Differential Privacy 101

Definition. If for any two neighboring 
datasets  and , and any outcome 




Then,  satisfies -DP

      — DP means that outputs are “close” in 
probability on two neighboring datasets

D D′ E
ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

M (ϵ, δ)

Key components: 
1. What are the neighboring datasets?  

— the identity for protection 
2. What are the outputs?   

— the view of adversary

Key properties: 
1. Composition, privacy loss adds up 
2. Post-processing, immune to further 

processing if data is not touched



Differential Privacy
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Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward 

for each action

Hl
# of batches in phase l

Those outputs are “indistinguishable” 

under two neighboring user sequences

Central model
Trusted

Differential Privacy 201

Gaussian mechanism for private sum of  bounded vectors


      i.e.,  is the private sum of  under -DP


, 


l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

😈

Neighboring Dataset & Output

• Two user sequences differing in one

• All action outputs of the central agent
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Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward 

for each action

Hl
# of batches in phase l

Those outputs are “indistinguishable” 

under two neighboring user sequences

Central model
Trusted

Differential Privacy 201

Gaussian mechanism for private sum of  bounded vectors


      i.e.,  is the private sum of  under -DP


, 


l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

😈

Neighboring Dataset & Output

• Two user sequences differing in one

• All action outputs of agents



Differential Privacy
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Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Add noise at each

local side

Hl
# of batches in phase l

Automatic private by post-processing

Local model
Untrusted

😈

Neighboring Dataset & Output

• Each user’s own output neighboring vector

• Local randomizer’s output 

Differential Privacy 101
Post-processing, immune to further processing 
if data is not touched 

— local implies central model

Noise will be too much :( !



Differential Privacy

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Hl

By post-processing, these are “indistinguishable” also

Shuffle model
Untrusted

😈

Neighboring Dataset & Output

• Two user sequences differing in one

• All inputs of the central agent

Shuffler

Differential Privacy 301

• Shuffle DP leverages additional randomness in the 
shuffler to amplify privacy


• Same untrusted agent as local model

• Huge improvement of utility



private version
Performance Guarantees

 Theorem 
There exists proper parameter choices of our algorithm such that it is -DP with regret   


1. Central model  —  

2. Local model —  

3. Shuffle model — 

(ϵ, δ)

Õ (T1−α/2+
log(1/δ)γTT1−α

ϵ )
Õ (T1−α/2+

log(1/δ)γTT1−α/2

ϵ )
Õ (T1−α/2+

log3/2(1/δ)γTT1−α

ϵ )

Recall

• Our non-private regret is 


• One stone, two birds

• Computation 

• Communication


• Gaussian noise depends on the vector dimension

Õ(T1−α/2 + γTT)

Privacy “for-free”

• The additional privacy cost is lower order term

• Thanks to our batching so that dim is controlled

• This shares similar spirit as DP-SCO 

• Central and shuffler model: Õ ( 1

n
+

1
nϵ )

Our batching (lazy update) and merging enable us to
1. Achieve the state-of-the-art time complexity —even for standard BO setting  

2. Keep our communication cost in control

3. Keep our privacy noise in control

One Stone, Three Birds



Thank you!


