
(Private) Kernelized Bandits with
Distributed Biased Feedback
Fengjiao Li1 Xingyu Zhou2 Bo Ji1

1Virginia Tech 2Wayne State University

Sequential Decision Making

2

x

f(x)
Black-box optimization

x*

Sequential Decision Making

3

x

f(x)
Black-box optimization

Black-box, no gradient information

No convexity

Sequential Decision Making

4

x

f(x)

x1

Observation: yt = f(xt) + ηt

Black-box optimization

Sequential Decision Making

5

x

f(x)

x1

Observation: yt = f(xt) + ηt

Black-box optimization

x2

Sequential Decision Making

6

x

f(x)

x1

Observation: yt = f(xt) + ηt

Black-box optimization

x2 x3

Sequential Decision Making

7

x

f(x)

x1

Observation: yt = f(xt) + ηt

Black-box optimization

x2 x3

Sequential Decision Making

8

x

f(x)

Observation: yt = f(xt) + ηt

Black-box optimization

x3
Minimize R(T) =

T

∑
t=1

f(x*) − f(xt)

x2x1

Sequential Decision Making

9

x

f(x)

x1

Black-box optimization

x2
Minimize R(T) =

T

∑
t=1

f(x*) − f(xt)

Any
assumptions on ? f

• lies in Reproducing Kernel Hilbert Space (RKHS)

• RKHS approximates any continuous function

• Include linear function as a special case

• Bounded RKHS norm, i.e., smoothness

f

x3

Bayesian Optimization
(BO)

General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

What’s the model?

x

f(x)

x1 x2
x3xt

General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

What’s the model?

x

f(x)

x1 x2
x3

Gaussian Process
Surrogate Model

GP(0,k(x, x′))

𝒩(0,λ)
Dt GP(μt, kt(x, x′))Only used for algorithm design!

Intuition&Fact Box
• - reward col-vector

• — matrix

•

• — updated mean

• - updated cov

Yt = [y1, y2, …, yT]⊤

Kt = [k(u, v)]u,v∈Dt
t × t

kt(x) = [k(x1, x), …, k(xt, x)]⊤

μt(x) = kt(x)⊤(Kt + λI)−1Yt

kt(x, x′) = k(x, x′) − kt(x)⊤(Kt + λI)−1kt(x′)
Dose not depend on !y

Closed-form posterior update

Dual form of least-square regression

General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

f(x)

x

f(x)

x1 x2
x3

μt + βtσt

μt

μt − βtσt

x

f(x)

x1 x2
x3

Gaussian Process
Surrogate Model
GP(μt, kt(x, x′))

w.h.p. [CG’17]| f(x) − μt(x) | ≤ βtσt(x), ∀x, t

General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

f(x)

x

f(x)

x1 x2 x3

μt + βtσt

μt

μt − βtσt

x

f(x)

x1 x2 x3

Gaussian Process
Surrogate Model
GP(μt, kt(x, x′))

GP-UCB
ft = μt + βtσt

GP-TS
ft ∼ GP(μt, kt)

xt = arg max ft(x)

General Algorithm Design

Online collected data up to time t

(x1, y1)
(x2, y2)

(xt−1, yt−1)

xt (xt, yt)

f(x)

x

f(x)

x1 x2 x3

μt + βtσt

μt

μt − βtσt

x

f(x)

x1 x2 x3

Gaussian Process
Surrogate Model
GP(μt, kt(x, x′))

GP-UCB
ft = μt + βtσt

GP-TS
ft ∼ GP(μt, kt)

xt = arg max ft(x)

Intuition&Fact Box
• Achieve regret bound

• — kernel-dependent, intrinsic dimensionality

• Linear kernel: , recover linear bandits

• Gaussian kernel (SE):

• Time complexity

• Each GP update using rank-1 update

Õ(γT T)
γT

O(d log T)
logd+1(T)

O(T3)
O(t2)

What if…

15

 is an expectationf

x

f(x) = 𝔼uF(x, u)

Stochastic optimization

 fu(x) := F(x, u)

x*

Related Area
• Zero-order non-convex stochastic opt.

• Different assumptions and metrics

• Without Lipschitz

• Total regret vs. convergence rate

…
…

.

…
…

.

Each is a sample from

 with mean

fu
GP f

Examples
Policy making, cellular config and more…

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

∼ f1(xt) ∼ f2(xt)

∼ f3(xt)

∼ f4(xt)

∼ f5(xt)

∼ f1(xt) ∼ f2(xt)

∼ f3(xt)

∼ f4(xt)

∼ f5(xt)

How to apply BO
(kernel bandits) in this

case?

Option I: Aggregate All
Impractical…

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

f1(xt) + η
f2(xt) + η

f1(xt) + η
f2(xt) + η

Large amount of comm.
• High communication cost

• Not everyone will share their feedback

How to apply BO
(kernel bandits) in this

case?

Option II: Sample One
GP-UCB/TS with a larger noise

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

f1(xt) + η f1(xt) + η

Intuition&Fact Box
• This is similar to SGD for Stochastic Optimization

• One-pass over the dataset to have unbiased sample

Three Limitations
• Need fresh users
• Poor scalability due to time complexity
• User’s privacy needs to be protected

O(T)
O(T3)

Option II: Sample One
GP-UCB/TS with larger noise

f(x) = 𝔼uF(x, u)

Policy maximizes expected user satisfaction Base station config optimizes expected performance

xt

f1(xt) + η f1(xt) + η

Three Limitations
• Need fresh users

• Poor scalability due to time complexity

• User’s privacy needs to be protected

O(T)
O(T3)

Intuition&Fact Box
• This is similar to SGD for Stoc. Optimization

• One-pass over the dataset to have unbiased sample

Is there any computation/communication efficient algorithm that interacts with only
users while still guaranteeing sub-linear regret and privacy?

o(T)

Contribution

Main Results

21

1. Propose a distributed phase-elimination-type BO algorithm with user sampling and batching

2. Involve with only unique users, —user sampling parameter

3. Incur (sub-linear) regret , computation , communication

4. Also establish regret performance under different Differential Privacy (DP) trust models — privacy “for free” in certain models

O(Tα) α ∈ (0,1]

Õ(T1−α/2 + γTT) O(γ4
T log T + γTTα) O(γTTα)

Policy maximizes expected user satisfaction

x

f(x) = 𝔼uF(x, u)

x*

Reminder: log order

for SE kernel

Our Approach

22

Policy maximizes expected user satisfaction

T

Phase-elimination
• Doubling phase length

• Eliminate poor actions/arms at end of each phase

• Can be easily extended to infinite domain setting

Eliminate poor actions

Obtain a new active set

Our Approach

23

Policy maximizes expected user satisfaction

T

User Sampling
• Each phase samples a new set of users

• Those users are fixed during the phase

• Each phase , , l |Ul | = 2αl α ∈ (0,1]

Need new users, otherwise the feedback is purely biased

Our Approach

24

Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

Phase l

x1 xh… … xHl

Batching: play the same arm multiple times

Our Approach

25

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

How to choose each action for each batch?

Can we mimic linear bandit using
G-optimal design here?

Not easy, we have infinite-dimension
in kernel bandits

Action Selection

• Rarely switching via batching
• Maximum variance reduction

Our Approach

26

Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

• Max-variance reduction principle

x1 xh

Phase l

… … xHl

How to choose each action for each batch?

Inspired by [Vak21], we use
max-variance reduction

σ2
l (x) = k(x, x′) − kl(x)⊤(Kl + λI)−1kl(x′)1. Only use the data in batch

2. Merge same actions together
l

Our Approach

27

Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

• Max-variance reduction principle

x1 xh

Phase l

… … xHl

Inspired by [Vak21], we use
max-variance reduction

σ2
l (x) = k(x, x′) − kl(x)⊤(Kl + λI)−1kl(x′)

Reduce dim to , which is Hl O(γT)

1. Only use the data in batch

2. Merge same actions together

l

Our Approach

28

Policy maximizes expected user satisfaction

T

Action Selection

• Rarely switching via batching

• Max-variance reduction principle

x1 xh

Phase l

… … xHl

Inspired by [Vak21], we use
Max-variance reduction

σ2
l (x) = k(x, x′) − kl(x)⊤(Kl + λI)−1kl(x′)

Reduce dim to , which is Hl O(γT)

Each element is

average reward

for each action

Hl
of batches in phase l

…
…

One Stone, Two Birds

• Reduce computation complexity

• Control the communication cost

Our Approach

29

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward

for each action

Hl
of batches in phase l

Arm Elimination

• Standard UCB and LCB comparison

• With proper confidence bonus

Dl+1 = {x ∈ Dl : μl(x) + wl(x) ≥ max
b∈Dl

μl(b) − wl(b)}

Two-level of uncertainty:

User and action

Theoretical Results

Non-private version
Performance Guarantees

 Theorem 1
There exists proper parameter choices of our algorithm such that it enjoys

1. Regret —

2. Total number of users —
3. Computation complexity —

4. Communication cost —

Õ(T1−α/2 + γTT)

O(Tα)
O(γTTα)

O(γTTα)

Remark: comparisons with GP-UCB

1. vs. — sub-optimal

2. vs.
3. vs. — poor scalability
4. vs.

Õ(γT T)
O(T)
O(T3)
O(T)

Intuition&Fact Box
• GP-UCB achieves regret bound

• — kernel-dependent, intrinsic dimensionality

• Linear kernel: , recover linear bandits

• Gaussian kernel (SE):

• Time complexity for GP-UCB

Õ(γT T)
γT

O(d log T)
logd+1(T)

O(T3)

Compare with prior work

1. Most related work is our prior work on linear bandit [LZJ’22] — our results include it as a special case

2. Experimental design for action selection in kernel bandits [CJK21] — our selection is much simpler without additional estimator

3. Zero-order non-convex stochastic opt.[BG18] — our metric is total regret rather than convergence rate

— thanks to phase-elimination

— thanks to user reuse
— thanks to batching and merging

— thanks to batching and merging

Privacy Protection

Differential Privacy

33

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward

for each action

Hl
of batches in phase l

Dl+1 = {x ∈ Dl : μl(x) + wl(x) ≥ max
b∈Dl

μl(b) − wl(b)}

Two-level of uncertainty:

User and action

Differential Privacy 101

Definition. If for any two neighboring
datasets and , and any outcome

Then, satisfies -DP

 — DP means that outputs are “close” in
probability on two neighboring datasets

D D′ E
ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′) ∈ E) + δ

M (ϵ, δ)

Key components:
1. What are the neighboring datasets?

— the identity for protection
2. What are the outputs?

— the view of adversary

Key properties:
1. Composition, privacy loss adds up
2. Post-processing, immune to further

processing if data is not touched

Differential Privacy

34

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward

for each action

Hl
of batches in phase l

Those outputs are “indistinguishable”

under two neighboring user sequences

Central model
Trusted

Differential Privacy 201

Gaussian mechanism for private sum of bounded vectors

 i.e., is the private sum of under -DP

,

l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

😈

Neighboring Dataset & Output

• Two user sequences differing in one

• All action outputs of the central agent

Differential Privacy

35

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Each element is

average reward

for each action

Hl
of batches in phase l

Those outputs are “indistinguishable”

under two neighboring user sequences

Central model
Trusted

Differential Privacy 201

Gaussian mechanism for private sum of bounded vectors

 i.e., is the private sum of under -DP

,

l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

😈

Neighboring Dataset & Output

• Two user sequences differing in one

• All action outputs of agents

Differential Privacy

36

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Add noise at each

local side

Hl
of batches in phase l

Automatic private by post-processing

Local model
Untrusted

😈

Neighboring Dataset & Output

• Each user’s own output neighboring vector

• Local randomizer’s output

Differential Privacy 101
Post-processing, immune to further processing
if data is not touched

— local implies central model

Noise will be too much :(!

Differential Privacy

Policy maximizes expected user satisfaction

Tx1 xh

Phase l

… … xHl

Hl

By post-processing, these are “indistinguishable” also

Shuffle model
Untrusted

😈

Neighboring Dataset & Output

• Two user sequences differing in one

• All inputs of the central agent

Shuffler

Differential Privacy 301

• Shuffle DP leverages additional randomness in the
shuffler to amplify privacy

• Same untrusted agent as local model

• Huge improvement of utility

private version
Performance Guarantees

 Theorem
There exists proper parameter choices of our algorithm such that it is -DP with regret

1. Central model —

2. Local model —

3. Shuffle model —

(ϵ, δ)

Õ (T1−α/2+
log(1/δ)γTT1−α

ϵ)
Õ (T1−α/2+

log(1/δ)γTT1−α/2

ϵ)
Õ (T1−α/2+

log3/2(1/δ)γTT1−α

ϵ)

Recall

• Our non-private regret is

• One stone, two birds

• Computation

• Communication

• Gaussian noise depends on the vector dimension

Õ(T1−α/2 + γTT)

Privacy “for-free”

• The additional privacy cost is lower order term

• Thanks to our batching so that dim is controlled

• This shares similar spirit as DP-SCO

• Central and shuffler model: Õ (1

n
+

1
nϵ)

Our batching (lazy update) and merging enable us to
1. Achieve the state-of-the-art time complexity —even for standard BO setting

2. Keep our communication cost in control

3. Keep our privacy noise in control

One Stone, Three Birds

Thank you!

