# (Private) Kernelized Bandits with **Distributed Biased Feedback** Fengjiao Li<sup>1</sup> Xingyu Zhou<sup>2</sup> Bo Ji<sup>1</sup>

<sup>1</sup>Virginia Tech <sup>2</sup>Wayne State University

















**Bayesian Optimization** (BO)

• *f* lies in Reproducing Kernel Hilbert Space (**RKHS**)

- RKHS approximates **any** continuous function
- Include linear function as a special case
- Bounded RKHS norm, i.e., **smoothness**















### **Intuition&Fact Box**

- Achieve  $\tilde{O}(\gamma_T \sqrt{T})$  regret bound
- $\gamma_T$  kernel-dependent, intrinsic dimensionality
  - Linear kernel:  $O(d \log T)$ , recover linear bandits
  - Gaussian kernel (SE):  $\log^{d+1}(T)$
- Time complexity  $O(T^3)$ 
  - Each GP update  $O(t^2)$  using rank-1 update





## What if... f is an expectation





15

## **Examples** Policy making, cellular config and more...



Policy maximizes expected user satisfaction



How to apply BO (kernel bandits) in this case?







Base station config optimizes expected performance



## Option I: Aggregate All Impractical...



How to apply BO (kernel bandits) in this case?  $f(x) = \mathbb{E}_{u}F(x, u)$ Base station config optimizes expected performance  $X_t$  $f_1(x_t) + \eta$ 13 3 5 5 Large amount of comm.



## **Option II: Sample One** GP-UCB/TS with a larger noise



Policy maximizes expected user satisfaction





- This is similar to SGD for Stochastic Optimization
  - One-pass over the dataset to have unbiased sar







Base station config optimizes expected performance

|      |  | Ì |
|------|--|---|
| nple |  |   |

## **Option II: Sample One GP-UCB/TS** with larger noise





### **Three Limitations**

• Poor scalability due to  $O(T^3)$  time complexity



**Intuition&Fact Box** 

• This is similar to SGD for Stoc. Optimization



# Contribution



Policy maximizes expected user satisfaction



- Propose a distributed **phase-elimination-type** BO algorithm with **user sampling** and **batching**
- Involve with only  $O(T^{\alpha})$  unique users,  $\alpha \in (0,1]$  —user sampling parameter 2.
- 3.
- 4.











Policy maximizes expected user satisfaction

### **Phase-elimination**

- Doubling phase length
- Eliminate poor actions/arms at end of each phase
- Can be easily extended to infinite domain setting







Policy maximizes expected user satisfaction



### **User Sampling**

- Each phase samples a new set of users
- Those users are fixed during the phase
- Each phase l,  $|U_l| = 2^{\alpha l}$ ,  $\alpha \in (0,1]$





Policy maximizes expected user satisfaction



### **Action Selection**

• Rarely switching via batching





Policy maximizes expected user satisfaction



### **Action Selection**

- Rarely switching via batching
- Maximum variance reduction





Policy maximizes expected user satisfaction



### Action Selection

- Rarely switching via batching
- Max-variance reduction principle







![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Picture_1.jpeg)

# Theoretical Results

![](_page_29_Picture_1.jpeg)

## **Performance Guarantees Non-private version**

### **Theorem 1**

There exists proper parameter choices of our algorithm such that it enjoys

- **1. Regret**  $\tilde{O}(T^{1-\alpha/2} + \sqrt{\gamma_T T})$ - thanks to phase-elimination
- 2. Total number of users  $O(T^{\alpha})$ - thanks to user reuse
- 3. Computation complexity  $O(\gamma_T T^{\alpha})$  thanks to batching and merging
- 4. Communication cost  $O(\gamma_T T^{\alpha})$

- thanks to batching and merging

- 1. Most related work is our prior work on linear bandit [LZJ'22] our results include it as a special case
- 2. Experimental design for action selection in kernel bandits [CJK21] our selection is much simpler without additional estimator
- 3. Zero-order non-convex stochastic opt.[BG18] our metric is total regret rather than convergence rate

### Intuition&Fact Box

- GP-UCB achieves  $\tilde{O}(\gamma_T \sqrt{T})$  regret bound
- $\gamma_T$  kernel-dependent, intrinsic dimensionality
  - Linear kernel:  $O(d \log T)$ , recover linear bandits
  - Gaussian kernel (SE):  $\log^{d+1}(T)$
- Time complexity  $O(T^3)$  for GP-UCB

![](_page_30_Figure_20.jpeg)

### Compare with prior work

![](_page_30_Picture_22.jpeg)

# Privacy Protection

![](_page_31_Picture_1.jpeg)

# **Differential Privacy**

### **Differential Privacy 101**

**Definition.** If for any two neighboring datasets D and D', and any outcome E $\mathbb{P}(M(D) \in E) \leq e^{e}\mathbb{P}(M(D') \in E) + \delta$ Then, M satisfies  $(e, \delta)$ -DP - DP means that outputs are "close" in

probability on two neighboring datasets

### **Key components:**

- 1. What are the neighboring datasets?— the identity for protection
- 2. What are the outputs?
  - the view of adversary

### **Key properties:**

- 1. Composition, privacy loss adds up
- 2. Post-processing, immune to further processing if data is not touched

![](_page_32_Figure_11.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

## Differential Privacy Shuffle model

(î î)

### Neighboring Dataset & Output

- Two user sequences differing in one
- All **inputs** of the central agent

100

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_6.jpeg)

### **Differential Privacy 301**

- Shuffle DP leverages additional randomness in the shuffler to amplify privacy
- Same untrusted agent as local model
- Huge improvement of utility

Policy maximizes expected user satisfaction

![](_page_36_Picture_12.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

3. Keep our privacy noise in control

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_5.jpeg)

# Thank you!