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Can we solve it with machine learning?
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Data set

I We collect 300 images for each artist.

I We split into 240 for training, 30 for validation and 30 for testing.

I Folder structure:



Data set

I We collect 300 images for each artist.

I We split into 240 for training, 30 for validation and 30 for testing.

I Folder structure:



Platform

I We use Keras with tensorflow backend to support neural networks.
I We use Google Colaboratory as our computing engine.

I
Free Tesla K80 GPU!

I
It is similar to Jupyter notebook:
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Baseline CNN
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Test Accuracy: 83.3%
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Activations Visualization

First layer: it keeps almost all of the information in the initial image.
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Activations Visualization

Higher layers:

I activations become abstract, less information about the visual
contents.

I the sparsity of the activations increases.



Well, the result is okay, but definitely not perfect, is it?

I agree, let’s improve it!
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Transfer Learning

Figure: Transfer learning setup

1

Source:

I Task: ImageNet

I Model: VGG16

Target:

I Task: Artist identification

I Model: Softmax classifier



Transfer learning

In our case:

I Trained convolutional base: VGG16

I New classifier: Softmax.



Transfer learning with VGG16

I Load pre-trained VGG16 model as base.

I Extract features

I Add densely connected classifier



Before we start...

Figure: Bottleneck features visualization, created by tsne



Now, let’s train it...

Test Accuracy: 94.6%



Now, let’s train it...

Test Accuracy: 94.6%



Nice result, but, shall we be satisfied with it?

No, let’s further improve it!
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Fine tuning

Figure: Frozen certain layers and fine tuning certain blocks only.



Show me the result...

Test Accuracy: 98.3% (make mistake on just one image)
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The missing one...



Does it really learn?



Some technicals

I Use data processing and augmentation.

I Batch size is 10.

I Training for 80 epochs.

I Optimizer is RMSprop with learning rate 2e�5.

I Activation is ReLu.

I L2 regularization of 1e�5.

I Dropout with probability 0.5.



Really nice, but, wait a minute...can you distinguish which column is
Monet’s works?
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A harder problem...

Claude Monet Alfred Sisley

I Exactly the same period.

I Nearly the same style.

I Almost the same scenarios.
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Is it possible?



Show me the result...

Test Accuracy: 86.6%

Future direction:

I Try model ensemble.

I Try batch normalization.

I Try dynamical rate adjustment.

I Try other pre-trained models (tried ResNet, not successful.)
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Take-away

I Transfer learning is powerful.

I VGG16 is very easy to train (maybe your first choice).

I Go try the Google colab (too good to be true).

I Keras maybe your first choice, easy and e↵ective.

Learn more about the details and code:

xingyuzhou.org/blog

xingyuzhou.org/blog

