
On Differentially Private Federated Linear
Contextual Bandits
Xingyu Zhou, Wayne State University

AI-EDGE Seminar @ OSU

Mar 2, 2023

Joint work with Sayak Ray Chowdhury, Microsoft Research, India

2

A hospital example

local model at each silo/agent

Server

Cross-silo Federated Learning[KMA+19]

Cross-silo Federated Learning

3

A hospital example

local model at each silo/agent

Server
global model at server

Cross-silo Federated Learning

4

A hospital example

Server
global model at server

updated local model at each silo/agent

communicate multiple rounds…

Cross-device FL

• Large no. of clients

• Limited resource

• e.g., clients are phones

Cross-silo FL

• Small no. agents/silos

• More resource

• e.g., silos are hospitals,

banks, schools

Cross-silo Federated Learning

5

Batch vs. Online learning

Server

In FL batch (supervised) learning:

• each silo has a static dataset

• offline training

• e.g., cancer diagnosis

Cross-silo Federated Learning

6

Server

time t

medical
history
📄

prescribed
medince
💊

In FL online learning:

• each silo has a stream of data

• online training/decision, i.e., learn from interaction

• e.g., personalized medical care

Batch vs. Online learning

Cross-silo Federated Learning

7

Server

time t

In FL online learning:

• each silo has a stream of data

• online training/decision, i.e., learn from interaction

• e.g., personalized medical care

feedback
😃= (📄, 💊)f

💊

📄

Batch vs. Online learning

Cross-silo Federated Learning

8

Server

In FL online learning:

• each silo has a stream of data

• online training/decision, i.e., learn from interaction

• e.g., personalized medical care

time t + 1

Batch vs. Online learning

Cross-silo Federated Learning

9

Linear contextual bandits (LCB)[APS11]

Server

In FL LCBs (online):

• unknown reward feedback is a linear function

• , is the feature map, is context and is the action

• is the unknown parameter

• is zero-mean noise

f yt = x⊤
t θ* + ηt

xt = ϕ(ct, at) ∈ ℝd ϕ ct at

θ*
ηt

time t

feedback
😃= (📄, 💊)f

💊

📄

Performance metric: group regret over agents during rounds M T

RM(T) =
M

∑
i=1

T

∑
t=1

[max
a

ϕi(ct,i, a)⊤θ* − ϕi(ct,i, at,i)⊤θ*]

Privacy in Cross-silo FL

10

Though locally stored data, privacy risks still exist

Server

Model parameters and updates can still reveal sensitive information

e.g., model inversion attacks [FJR15, HZL19] or membership inference attacks [SSS+17]

😈

Adversary could also be other silos

i.e., collude to infer users in another silo

😈

😈

😈

Differentially Private Cross-silo FL

11

Differential privacy[DR14] — a rigorous privacy protection

😈

[1] A more general view is via -divergence or Reny divergence between two distributions f

How about privatizing
all model updates?

By post-processing, this is also private😈

😈

😈

Differential Privacy 101

Definition. If for any two neighboring
datasets and , and any outcome

Then, satisfies -DP

 — DP means that outputs are “close” in
probability[1] on two neighboring datasets

D D′ E
ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′) ∈ E) + δ

M (ϵ, δ)

Key components:
1. What are the neighboring datasets?

— the identity for protection
2. What are the outputs?

— the view of adversary

Key properties:
1. Composition, privacy loss adds up
2. Post-processing, immune to further

processing if data is not touched

Silo-level Local Differential Privacy (LDP)

12

All communication from each silo is private

Server

[1] Similar privacy notion in different names exist in previous works, see [LR21, LHW+22]

Silo-level LDP [1]

Definition (informal). The full transcript of
communication between any agent
and server are “close” in prob. on any two
local neighboring datasets at agent

i ∈ [M]

i

Local neighboring datasets at agent : a
sequence of users that differs in only one user

— protect each user/patient

— different from standard DP for cross-device
FL, where each client is protected

i
T

Outputs: full communication transcript
— communicated models/messages

— communication schedule, i.e., when
communication happens

t = 1 t = 5 t = 10

Private Federated LCB

13

The state-of-the-art[DP20]

[DP20] Differentially-private federated linear bandits. NeurIPS 2020

[Dubey&Pentland ’20]

Algorithm: federated LinUCB with Gaussian mechanism (tree-based)

Privacy: essentially the same as silo-level LDP

Regret: additional regret due to privacy is

Conclusion: match the regret achieved by a “super” single agent

Õ(MT/ϵ)

The imaginary “super” single agent

i.e., observe feedback immediately

Hence, a “lower bound” for the FL

Fundamental Gaps

Privacy leakage

• The proposed algorithm fails to guarantee silo-level LDP

• A simple attack can reveal sensitive information of users

Incorrect regret
• The claimed privacy cost is mis-calculated

• The correct one is

• Hence, no longer match the “lower bound”

Õ(M3/4 T/ϵ)

Contribution

Main Results

1. Identify the privacy and regret gaps in the state-of-the-art

2. Propose a generic federated algorithm with flexible privacy protocols

3. Achieve the correct regret bound under silo-level LDP, i.e., the privacy cost is

4. Shave the additional factor under shuffle differential privacy (SDP) — still a weak trust DP model

Õ(M3/4 T/ϵ)

M1/4

😈

😈

The communication schedule is not fully private

Observe when sync happens, other silos can infer the user in another silo

Untrusted

The output of the shuffler is already private
Shuffler

16

Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

The communication schedule is not fully private

Observe when sync happens, other silos can infer the user in another silo

😈

😈

17

Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

Communication schedule for silos in SOTA 📩

• — all previous sync data among all silos

• — new non-private local data at silo since recent sync

• — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

📩

18

Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

Communication schedule for silos in SOTA 📩

• — all previous sync data among all silos

• — new non-private local data at silo since recent sync

• — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

19

Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

Communication schedule for silos in SOTA 📩

• — all previous sync data among all silos

• — new non-private local data at silo since recent sync

• — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

😈 Malicious silo can take advantage of this to infer user’s sensitive data in another silo

20

Server

Privacy Gap in SOTA
A simple toy-example attack

Communication schedule for silos in SOTA 📩

• — all previous sync data among all silos

• — new non-private local data at silo since recent sync

• — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

😈

Alice

Bob

Hospital 1

Hospital 2

time t = 1

📄

📄

💊

💊

😃

☹

f(XAlice, Z = 0) > 0

f(XBob, Z = 0) ≤ 0

📩

What’s information of
Alice can be inferred?

Privacy leakage of Alice: Silo 2 can infer Alice’s data
• Silo 2 observes new sync happens

• It knows that this sync is not triggered by itself

• Hence, it is due to silo 1,

• Moreover, is the same among silos
f(XAlice, Z = 0) > 0

f

21

Server

Privacy Gap in SOTA
A simple toy-example attack

Communication schedule for silos in SOTA 📩

• — all previous sync data among all silos

• — new non-private local data at silo since recent sync

• — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

😈

Alice

Bob

Hospital 1

Hospital 2

Privacy leakage of Alice
Silo 2 gets to know at time f(XAlice, Z = 0) > 0 t = 1

Silo 2 knows the norm of Alice’s feature vector

(, , ,)

xAlice
2 > C := λ(eD − 1)

t = 1 t′ = 0 Z = 0 x1,1 = xAlice

Context info leaked via feature vector
i.e., Alice may have both diabetes and heart disease

In particular, a sync triggered by silo at time if

• most resent sync before and some threshold

• , i.e., feature vector

i t

(t−t′)log
det (Z+∑t

s=t′ +1 xs,ix⊤
s,i+λI)

det (Z+λI)
>D

t′ t D
xs,i = ϕ(cs,i, as,i)

22

Regret Gap in SOTA
Miscalculated total privacy noise

Larger total privacy noise implies larger regret
Ignore the privacy issue, the total amount of privacy noise in SOTA needs to be

 = , i.e., factor of its current one (recall is the no. silos)σ2
total M σ2 M M

Current conclusion in SOTA becomes ungrounded
After the correction of factor, the regret due to privacy changes from

 (match the “lower bound” of a single agent)

to

 (has a gap of compared to “lower bound”)

M
Õ(MT/ϵ)

Õ(M3/4 T/ϵ) M1/4

😈

Motivating Questions
1. How to address the privacy leakage? (💡 a fixed communication schedule may work, i.e., does not depend on user’s non-private data)

2. How to correct the regret bound while preserving the privacy?

3. How to close the gap compared to the “lower bound” ? (💡 need a way to get rid of factor)

4. If possible, can we achieve all of them via a generic method? (💡 a template algorithm with a template proof is preferred)

M

Privacy leakage of user’s feature vector

(due to adaptive sync schedule)

😈

Regret gap to “lower bound”

(due to factor privacy noise)M

Our Approach

A Generic Algorithm

25

Private-FedLinUCB
Private-FedLinUCB

(fixed batch sync of LinUCB with privacy)
Parameters: batch size , privacy protocol

Initialize: ; ,

for do

for each agent do

,

Estimate:

UCB:

Observe reward ; set

Update local data: ,

if then

,

Receive , from server

Reset

B P = (R, S, A)

∀i, Wi = 0,Ui = 0 W̃syn = 0 Ũ syn = 0

t = 1,…, T

i = 1,…, M

Vt,i = λI + W̃syn + Wi Ut,i = Ũ syn + Ui

̂θt,i = V−1
t,i Ut,i

at,i = arg max
a

ϕ(ct,i, a)⊤ ̂θt + βt ϕ(ct,i, a)
V−1

t,i

yt,i xt,i = ϕ(ct,i, at,i)

Wi = Wi + xt,ix⊤
t,i Ui = Ui + xt,iyt,i

t mod B = 0

W̃syn = P({Wi}i∈[M]) Ũ syn = P({Ui}i∈[M])

W̃syn Ũ syn

Wi = 0,Ui = 0

Single agent LinUCB[APS11] 101
For :

1. Estimate : ,

 ((“covariance”), (“bias”))

2. UCB:

(, — chosen via confidence bound)

t = 1,…, T
θ* ̂θt = V−1

t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsys

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

xt = ϕ(ct, at) βt

 — sum of local covariance matrices at agent

 — sum of local bias vectors at agent

 — private sync covariance matrices among all agents

 — private sync bias vectors among all agents

Wi i
Ui i
W̃syn
Ũ syn

 — sum of regularizer, sync and new local cov. matrices

 — sum of sync and new local bias vectors

Vt,i
Ut,i

, a template protocol for summation (will discuss it soon)

 — local randomzier at agent side (on ,)

 — shuffler or identity mapping, between agents, server

 — analyzer at server side

P = (R, S, A)
R Wi Ui
S
A

A Generic Algorithm

26

Private-FedLinUCB
Private-FedLinUCB

(fixed batch sync of LinUCB with privacy)
Parameters: batch size , privacy protocol

Initialize: ; ,

for do

for each agent do

,

Estimate:

UCB:

Observe reward ; set

Update local data: ,

if then

,

Receive , from server

Reset

B P = (R, S, A)

∀i, Wi = 0,Ui = 0 W̃syn = 0 Ũ syn = 0

t = 1,…, T

i = 1,…, M

Vt,i = λI + W̃syn + Wi Ut,i = Ũ syn + Ui

̂θt,i = V−1
t,i Ut,i

at,i = arg max
a

ϕ(ct,i, a)⊤ ̂θt + βt ϕ(ct,i, a)
V−1

t,i

yt,i xt,i = ϕ(ct,i, at,i)

Wi = Wi + xt,ix⊤
t,i Ui = Ui + xt,iyt,i

t mod B = 0

W̃syn = P({Wi}i∈[M]) Ũ syn = P({Ui}i∈[M])

W̃syn Ũ syn

Wi = 0,Ui = 0

Single agent LinUCB[APS11] 101
For :

1. Estimate : ,

 ((“covariance”), (“bias”))

2. UCB:

(, — chosen via confidence bound)

t = 1,…, T
θ* ̂θt = V−1

t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsys

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

xt = ϕ(ct, at) βt

,a template protocol for summation (will discuss it soon)

 — local randomzier at agent side (on ,)

 — shuffler or identity mapping, between agents, server

 — analyzer at server side

P = (R, S, A)
R Wi Ui
S
A

Remark: fixed vs. adaptive schedule
• It now suffices to privatize each sent messages for silo-level LDP guarantee

— and is private at each sync round

— without worrying privacy leakage via schedule

— needs to balance between comm. cost, regret, and privacy

• The problem in SOTA is: schedule depends on non-private data (i.e.,)

— how about privatizing it first and then be adaptive?

— we show that it will lead to fundamental challenge in regret analysis

R(Wi) R(Ui) k ∈ [T/B]

B

Wi

A Generic Priv. Protocol

27

Distributed Tree-based alg.
P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Differential Privacy 201
1. Gaussian mechanism for private sum of bounded vectors

 i.e., is the private sum of under -DP

,

Intuition: change one data, the sum changes in , bounded by

l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

l2 L

2. Continual private sum (essential for private online learning)

 i.e., a stream of data , compute — priv. sum of
γ1, …, γK s̃k

k

∑
s=1

γs

Simple Approach I: add noise () to each

— -DP (by post-processing)

— total noise is (❗)

Simple Approach II: add noise () to each prefix sum

— total noise is for all

— -DP (by composition of DP)

— i.e., for -DP, the total noise needs to be (❗)

≈ 1/ϵ2 γs

(ϵ, δ)
K /ϵ2

≈ 1/ϵ2

1/ϵ2 k
≈ (Kϵ, δ′)

(ϵ, δ) K /ϵ2

A Generic Priv. Protocol

28

Distributed Tree-based alg.
P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Differential Privacy 201
1. Gaussian mechanism for private sum of bounded vectors

 i.e., is the private sum of under -DP

,

Intuition: change one data, the sum changes in , bounded by

l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L log(1/δ)

ϵ2

l2 L

2. Continual private sum (essential for private online learning)

 i.e., a stream of data , compute — priv. sum of
γ1, …, γK s̃ t

k

∑
s=1

γs

Tree-based algorithm [CSS11]: add noise to partial sum
∑ [i, j]

Key observations:
— each data affects at most p-sums (noise each)
— each prefix sum needs at most p-sums

— total noise is still (✅ ignore log factor)

O(log K) Õ (1/ϵ2)
O(log K)

Õ (1/ϵ2)

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

A Generic Priv. Protocol

29

Distributed Tree-based alg.
P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Differential Privacy 201

Tree-based algorithm [CSS11] for continual private sum

 i.e., a stream of data , compute — priv. sum of
γ1, …, γK s̃ t

k

∑
s=1

γs

γ1 γ2 γ3 γ4 γ5

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Sequential implementation (dynamically compute p-sum, tree node)
1. For each round , express in binary form:

2. Find index of first one

3. Compute non-private p-sum:

4. Private p-sum

5. Final output

k k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik = αik + 𝒩(0,σ2I)

s̃ k = ∑
j:Bin(k)=1

α̃j

(e.g., for , it is 110)k = 6
(for ,)k = 6 ik = 1

(— stores the sum of data)αj 2j

1

2

3

4

5

6

γ6 γ7 γ8

7

8

(for , [1,4] + [5,6])k = 6

A Generic Priv. Protocol

30

Distributed Tree-based alg.

Differential Privacy 201

Tree-based algorithm [CSS11] for continual private sum

 i.e., a stream of data , compute — priv. sum of
γ1, …, γK s̃ t

k

∑
s=1

γs

γ1 γ2 γ3 γ4 γ5

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Sequential implementation (dynamically compute p-sum, tree node)
1. For each round , express in binary form:

2. Find index of first one

3. Compute non-private p-sum:

4. Private p-sum

5. Final output

k k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik = αik + 𝒩(0,σ2I)

s̃ k = ∑
j:Bin(k)=1

α̃j

(e.g., for , it is 110)k = 6
(for ,)k = 6 ik = 1

(— stores the sum of data)αj 2j

1

2

3

4

5

6

γ6 γ7 γ8

7

8

(for , [1,4] + [5,6])k = 6

P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Procedure: Local Randomizer at each agent

for each sync do

Express in binary form:

Find index of first one

Compute non-private p-sum:

Output noisy p-sum

R i ∈ [M]

k = 1,…, K

k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik,i = αik + 𝒩(0,σ2I)

Procedure: Analyzer at server

for each sync do

Express in binary form and find index of first one

Add noisy p-sums from all agents

Output total sum:

A

k = 1,…, K

k ik
α̃ik = ∑

i∈[M]

α̃ik,i

s̃ k = ∑
j:Bin(k)=1

α̃j

{Procedure: Shuffler (could be empty or identity mapping)S

Private-FedLinUCB
(fixed batch sync of LinUCB with privacy)

Parameters: batch size , privacy protocol

Initialize: ; ,

for do

for each agent do

,

Estimate:

UCB:

Observe reward ; set

Update local data: ,

if then

,

Receive , from server

Reset

B P = (R, S, A)

∀i, Wi = 0,Ui = 0 W̃syn = 0 Ũ syn = 0

t = 1,…, T

i = 1,…, M

Vt,i = λI + W̃syn + Wi Ut,i = Ũ syn + Ui

̂θt,i = V−1
t,i Ut,i

at,i = arg max
a

ϕ(ct,i, a)⊤ ̂θt + βt ϕ(ct,i, a)
V−1

t,i

yt,i xt,i = ϕ(ct,i, at,i)

Wi = Wi + xt,ix⊤
t,i Ui = Ui + xt,iyt,i

t mod B = 0

W̃syn = P({Wi}i∈[M]) Ũ syn = P({Ui}i∈[M])

W̃syn Ũ syn

Wi = 0,Ui = 0

P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Procedure: Local Randomizer at each agent

for each sync do

Express in binary form:

Find index of first one

Compute non-private p-sum:

Output noisy p-sum

R i ∈ [M]

k = 1,…, K

k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik,i = αik + 𝒩(0,σ2I)

Procedure: Analyzer at server

for each sync do

Express in binary form and find index of first one

Add noisy p-sums from all agents

Output total sum:

A

k = 1,…, K

k ik
α̃ik = ∑

i∈[M]

α̃ik,i

s̃ k = ∑
j:Bin(k)=1

α̃j

Putting them together
• Each agent runs two privacy protocol — sum of covariance matrices (i.e.,) and sum of bias vectors (i.e.,)

• The datapoint is a batch of data — total matrices or vectors during the th batch

• The sensitivity does not scale with respect to

Wi Ui
γk k

B

γbias
k =

kB

∑
t=(k−1)B+1

xtyt

γcov
k =

kB

∑
t=(k−1)B+1

xtx⊤
t

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

32

Algorithm in action
Illustration

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γbias
6 =

6B

∑
t=5B+1

xtyt

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

=
Ũ syn

+

Private sum across both time and agents

M

∑
i=1

6B

∑
t=1

xt,iyt,i

How about
summing over time at

each agent?

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

33

An alternative protocol
Palt

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γbias
6 =

6B

∑
t=5B+1

xtyt

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Server simply aggregates

First sum over time at each agent

=

[1,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

34

An alternative protocol
Palt

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γbias
6 =

6B

∑
t=5B+1

xtyt

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Server simply aggregates

First sum over time at each agent

=

[1,6]

Remark: comparisons
• As we will see, both protocols work for silo-level LDP

— same regret under same -DP

• However, for shuffle DP, things are different

— our protocol manages to close the gap

— fails to close the gap

(ϵ, δ)

Palt (more on this later…😉)

Theoretical Results

Fix the issues in SOTA
Federated LCBs under Silo-level LDP

 Theorem 1 (Performance under silo-level LDP, informal)

Let batch size , privacy noise in be with . Then, Private-FedLinUCB enjoys

1. Privacy — -silo-level LDP for any

2. Regret —

3. Communication — rounds of sync between agents and server

B = T/M P σ2 = 8κ ⋅
log(2/δ) + ϵ

ϵ2
κ = 1 + log(T/B)

(ϵ, δ) ϵ > 0, δ ∈ (0,1)

RM(T) = non-private regret + T
(Md)3/4log1/4(1/δ)

ϵ

MT

36

Remark: comparisons with related work
1. Compared with SOTA[DP20]

— privacy: we fix the privacy leakage, thanks to the fixed-batch schedule and tree-based algorithm

— regret: we establish the correct privacy cost, i.e., the additional regret due to privacy now scales with (instead of)

— communication: communication is worse than SOTA () due to fixed-batch comm. But, note that there exists privacy leakage

2. Compared with “super” single agent under central DP[SS18]

— our regret is factor worse than this “lower bound”

M3/4 M

Tvs . log T

M1/4

Match the “lower bound”
Federated LCBs under SDP

37

Differential Privacy 501

1. What is shuffle DP (SDP)?
— formally defined in [CSUZZ19]

— , “the output of shuffler is private”

— (change any , the outputs are “close”)

P = (R, S, A)
di

“private”

2. How to achieve it?
— one way is via LDP amplification, e.g., [FMT20]

— shuffle LDP outputs (each -DP), then it is SDP

— “reduce the privacy loss by a factor of ✅”
— (intuition: hiding among clones)

n ϵ0 ≈ ϵ0/ n
1/ n

ϵ0

ϵ0

ϵ0

ϵ0

n

Rd1

d2 R

S
Rdn

A

… …

Match the “lower bound”
Federated LCBs under SDP

38

Differential Privacy 501

1. What is shuffle DP (SDP)?
— formally defined in [CSUZZ19]

— , “the output of shuffler is private”

— (change any , the outputs are “close”)

P = (R, S, A)
di

“private”

2. How to achieve it?
— one way is via LDP amplification, e.g., [FMT20]

— shuffle LDP outputs (each -DP), then it is SDP

— “reduce the privacy loss by a factor of ✅”
— (intuition: hiding among clones)

n ϵ0 ≈ ϵ0/ n
1/ n

ϵ0

ϵ0

ϵ0

ϵ0

n

Rd1

d2 R

S
Rdn

A

… …

How about
adding shuffler between

agents and server?
 1/ M

Good news: this amplification can close the gap ✅

Bad news: one cannot directly use existing results ❗

— they only amplify LDP (oper. on single data)

— in our case, oper. on multiple datapoints

— (this leads to key difference in the analysis)

R

R

A new amplification lemma is derived ✅

— tailored for Gaussian DP mecha.

— avoid group privacy

— control the blow up in δ

Clones are harder to create due to multiple local points

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Match the “lower bound”
Federated LCBs under SDP

39

 Theorem 2 (Performance under SDP, informal)

Let batch size and , privacy noise in be . Then, Private-FedLinUCB (with shuffler) enjoys

1. Privacy — -SDP for any , where are constants

2. Regret —

3. Communication — rounds of sync between agents and server

B = T/M κ = 1 + log(T/B) P σ2 = Õ (κ log(1/δ)
ϵ2M)

(ϵ, δ) ϵ ∈ (0,
κ

C1T M), δ ∈ (0,
κ

C2T) C1, C2

RM(T) = non-private regret + MT
d3/4 log3/4(Mκ /δ)

ϵ

MT

Match the “lower bound”
Privacy cost is on the order of MT

Minimum modifications
Compared to silo-level LDP, one only needs to

— add a shuffler

— adjust the noise in local randomizer R

Privacy holds for small only
This comes from two factors due to amplification lemma

— is the standard term

— is the new term due to multiple local points

ϵ

1/ M
1/T

How to improve the privacy
guarantees?

Leverage vector-sum protocol
Federated LCBs under SDP

40

Differential Privacy 502

2. Performance of
— it guarantees SDP for all

— the injected noise is per entry (indep. of n)

(Essentially, it simulates central model without a trusted server)

Pvec
ϵ ∈ (0,15), δ ∈ (0,1/2)

L2

ϵ2
log2(d /δ)

Rd1

d2 R

S
Rdn

A

… …

1. How to achieve SDP?
— instead of using amplification lemma

— one can use specific shuffle protocol

— [CJMP21] is one example Pvec = (Rvec, S, Avec)

“ vectors with -norm ”n l2 L

Leverage vector-sum protocol
Federated LCBs under SDP

41

Differential Privacy 502

2. Performance of
— it guarantees SDP for all

— the injected noise is per entry (indep. of n)

(Essentially, it simulates central model without a trusted server)

Pvec
ϵ ∈ (0,15), δ ∈ (0,1/2)

L2

ϵ2
log2(d /δ)

Rd1

d2 R

S
Rdn

A

… …

1. How to achieve SDP?
— instead of using amplification lemma

— one can use specific shuffle protocol

— [CJMP21] is one example Pvec = (Rvec, S, Avec)

“ vectors with -norm ”n l2 L

Can we simply use
 to add all p-sums

across agents?
Pvec

M

The norm of p-sum could be linear with ❗

— sum of p-sums with (i.e.,)

— each data point has a large norm

T

M Pvec n = M

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

View in as data points across agents

—e.g., for

— each p-sum has points

— with each norm bounded

— each sync incurs only noise ✅

n Pvec

k = 6

2B

n = M ⋅ 2B

1/ϵ2

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

42

Algorithm in action
With Pvec

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

=
Ũ syn

+

Private sum across both time and agents

M

∑
i=1

6B

∑
t=1

xt,iyt,i

 (the 6-th communication)

[……] [……]

A batch of bias vectors

[……] [……]

[……] [……]

…
…

…
…

…
…
…
…
…
…
…
…

Pvec

n = 2B ⋅ M

Improved privacy via Pvec

Federated LCBs under SDP

43

 Theorem 3 (Performance under SDP via , informal)Pvec

Let batch size and . Combine with our privacy protocol. Then, Private-FedLinUCB enjoys

1. Privacy — -SDP for any ,

2. Regret —

3. Communication — rounds of sync between agents and server

B = T/M κ = 1 + log(T/B) Pvec
(ϵ, δ) ϵ ∈ (0,60), δ ∈ (0,1)

RM(T) = non-private regret + MT
d3/4 log3/4(Mκ /δ)

ϵ

MT

Match the “lower bound”
Privacy cost is on the order of MT

A more complicated algorithm
— need

— need store all data points

Pvec
Privacy holds for a wide range of

This significantly improve upon the one via amplification
ϵ

Analysis

“One-line” proof for regret
A Generic Analysis

45

 Proposition 1 (Generic regret bound under PNC, informal)

Suppose that the privacy protocol satisfies PNC with parameter , then Private-FedLinUCB enjoys the following regret with high probability σ2
tot

Privacy Noise Condition (PNC)

For any , let be total privacy noise injected in and , respectively

1. be a random vector, each entry is zero mean sub-Gaussian with variance at most

2. be a random symmetric matrix, each entry is zero mean sub-Gaussian with variance at most

t = kB Nt,i, nt,i

t

∑
s=1

xs,ix⊤
s,i

t

∑
s=1

xs,iys,i

∑
i∈[M]

nt,i σ2
tot

∑
i∈[M]

Nt,i σ2
tot

RM(T) = Õ (dMB + d MT + σtotMTd3/4)
Cost due to batching Standard regret Cost due to privacy

Aggregated prefix sum

(sum over time and agents)

46

Total Privacy Noise
Silo-level LDP

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy: σtotMT

…
…
…

 privacy noise in each p-sum

(thanks to binary tree)

Õ(1/ϵ2)

 privacy noise in aggregated p-sum

(sum of noise)

Õ(M/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,

(sum of noise)

Õ(M/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under silo-level LDP: Õ(M3/4 T/ϵ)

47

Total Privacy Noise
SDP via Amp.

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy: σtotMT

…
…
…

 privacy noise in each p-sum

(thanks to binary tree and amplification)

Õ(1/Mϵ2)

 privacy noise in aggregated p-sum

(sum of noise)

Õ(1/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,

(sum of noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ(MT/ϵ)

48

Total Privacy Noise
SDP via Pvec

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy: σtotMT

…
…
…

 privacy noise in aggregated p-sum

(each datapoint only in)

Õ(1/ϵ2)
log K Pvec

 privacy noise in aggregated prefix sum

i.e.,

(sum of noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ(MT/ϵ)

[……] [……]

[……] [……]

…… …… ………… Pvec

49

Importance of p-sum
Why fails for SDPPalt

Prop. 1. Regret due to privacy: σtotMT

Regret under SDP: Õ(MT/ϵ)

50

Importance of p-sum
SDP via Amp.

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy: σtotMT

…
…
…

 privacy noise in each p-sum

(thanks to binary tree and amplification

And each data point only in shuffle outputs)

Õ(1/Mϵ2)

log K

 privacy noise in aggregated p-sum

(sum of noise)

Õ(1/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,

(sum of noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ(MT/ϵ)

51

Importance of p-sum
SDP via Amp.

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy: σtotMT

…
…
…

 privacy noise in each prefix sum

But, this cannot ensure -SDP

(each data point in shuffle outputs
hence, composition is required)

As a result, more noise is required!

Õ(1/Mϵ2)
(ϵ, δ)

K

 privacy noise in aggregated p-sum

(sum of noise)

Õ(1/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,

(sum of noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ(MT/ϵ)

Simulations

Discussions

Q1: Can we further reduce
comm. cost to log T

Then, it might need adaptive
update based on determinant
condition. Challenges exist in

private case

Q2: Silo-level LDP/
SDP vs. other privacy
notions in contextual

bandits?

We give a comprehensive
discussions on difference and

connections

Q3: What if users even do
not trust each local agent?

It turns out that a simple tweak of
our algorithm can handle this

situation

Q4:
What if users

participate multiple times ?
(within one silo or across

silos)

One can use composition or group
privacy to handle. Or directly
analyze the total sensitivity

Q5: How to balance
between privacy and

algorithm complexity?

Good question. We are working on
it right now

Q6: Can we generalize it to
federated RL

Yes, at least for RL with linear
function approximation

One last thing…

Recent Research…

57

• Private MAB
— “MAB under local DP with tight lower bound” [RZLS20, arxiv]
— “the state-of-the-art of private MAB for all three DP models” [CZ*23, ICLR23]
— “private and robust MAB” [WZ*TW23, submitted]

[Z* means co-primary authors]

• Private Contextual Bandits
— “linear contextual bandits under shuffle model” [CZ*22, ICML22]
— “federated LCBs under both silo-level LDP and SDP [ZC, arixv, submitted]
— “kernel bandits under local model” [ZT21, AAAI21]
— “private linear bandits with distributed feedback” [LZJ22, WiOpt22, Best Student Paper]
— “private distributed kernel bandits” [LZJ23, Sigmetrics23]

• Private RL
— “A comprehensive study of tabular RL under both central and local DP models” [CZ*22, AAAI22, oral]

— “The first study of private RL with linear function approximation”[Z22, Sigmetrics22]
— “Study of private LQR” [CZ*S21, ISIT21]

Many interesting open problems in
this area…

Collaborations are welcome 🎉

Many thanks to all my collaborators

Reference
• [KMA+19] Peter Kairouz, H. Brendan McMahan, Brendan Avent, et al. Advances and open problems in federated learning. arXiv preprint:1912.04977, 2019

• [APS11] Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. "Improved algorithms for linear stochastic bandits." NeurIPS, 2011.

• [FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, pages 1322–1333, 2015.

• [HZL19] Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference. In Proceedings of the 35th Annual Computer Security Applications

Conference, pages 148–162, 2019

• [SSS+17] Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In2017 IEEE symposium on security and privacy (SP) 2017 May

22 (pp. 3-18). IEEE.

• [DR14] Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." Foundations and Trends® in Theoretical Computer Science 9.3–4 (2014): 211-407.

• [LR21] Private federated learning without a trusted server: Optimal algorithms for convex losses. arXiv preprint arXiv:2106.09779, 2021

• [LHW+22] On privacy and personalization in cross-silo federated learning. arXiv preprint arXiv:2206.07902, 2022

• [CSS11] Chan, T-H. Hubert, Elaine Shi, and Dawn Song. "Private and continual release of statistics." ACM Transactions on Information and System Security (TISSEC) 14.3 (2011): 1-24.

• [CSUZZ19] Cheu, A., Smith, A., Ullman, J., Zeber, D., & Zhilyaev, M. (2019). Distributed differential privacy via shuffling. In Advances in Cryptology–EUROCRYPT 2019: 38th Annual

International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38 (pp. 375-403). Springer
International Publishing.

• [FMT20] Feldman, Vitaly, Audra McMillan, and Kunal Talwar. "Hiding among the clones: A simple and nearly optimal analysis of privacy amplification by shuffling." In 2021 IEEE 62nd
Annual Symposium on Foundations of Computer Science (FOCS), pp. 954-964. IEEE, 2022

• [CJMP21] Cheu, Albert, Matthew Joseph, Jieming Mao, and Binghui Peng. "Shuffle private stochastic convex optimization." arXiv preprint arXiv:2106.09805 (2021).

• [RZLS20] Ren, Wenbo, Xingyu Zhou, Jia Liu, and Ness B. Shroff. "Multi-armed bandits with local differential privacy." arXiv preprint arXiv:2007.03121 (2020).

• [CZ*23] Chowdhury, Sayak Ray, and Xingyu Zhou. "Distributed Differential Privacy in Multi-Armed Bandits.” ICLR23.

• [WZ*TW] Wu, Yulian, Xingyu Zhou, Youming Tao, and Di Wang. "On Private and Robust Bandits." arXiv preprint arXiv:2302.02526 (2023).

• [CZ*22] Chowdhury, Sayak Ray, and Xingyu Zhou. "Shuffle private linear contextual bandits." ICML22.

• [ZC23] Xingyu Zhou, and Chowdhury, Sayak Ray “On Differentially Private Federated Linear Contextual Bandits”

• [ZT21] Zhou, Xingyu, and Jian Tan. "Local differential privacy for bayesian optimization." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp.

11152-11159. 2021.

Reference
• [LZJ22] Li, Fengjiao, Xingyu Zhou, and Bo Ji. "Differentially private linear bandits with partial distributed feedback." In 2022 20th International Symposium on Modeling and

Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt), pp. 41-48. IEEE, 2022.

• [LZJ23] Li, Fengjiao, Xingyu Zhou, and Bo Ji. "(Private) Kernelized Bandits with Distributed Biased Feedback." arXiv preprint arXiv:2301.12061 (2023).

• [CZ*22] Chowdhury, Sayak Ray, and Xingyu Zhou. "Differentially private regret minimization in episodic markov decision processes." In Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 36, no. 6, pp. 6375-6383. 2022.

• [Z22] Zhou, Xingyu. "Differentially private reinforcement learning with linear function approximation." Proceedings of the ACM on Measurement and Analysis of Computing Systems 6,

no. 1 (2022): 1-27.

• [CZ*] Chowdhury, Sayak Ray, Xingyu Zhou, and Ness Shroff. "Adaptive control of differentially private linear quadratic systems." In 2021 IEEE International Symposium on Information

Theory (ISIT), pp. 485-490. IEEE, 2021.

Thank you!

