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A hospital example

local model at each silo/agent

Server

Cross-silo Federated Learning[KMA+19]
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A hospital example

local model at each silo/agent

Server
global model at server 
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A hospital example

Server
global model at server 

updated local model at each silo/agent

communicate multiple rounds… 

Cross-device FL

• Large no. of clients

• Limited resource

• e.g., clients are phones

Cross-silo FL

• Small no. agents/silos 

• More resource

• e.g., silos are hospitals, 


banks, schools
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Batch vs. Online learning

Server

In FL batch (supervised) learning:

• each silo has a static dataset 

• offline training

• e.g., cancer diagnosis 
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Server

time t

medical 
history  
📄

prescribed 
medince  
💊

In FL online learning:

• each silo has a stream of data

• online training/decision, i.e., learn from interaction

• e.g., personalized medical care 

Batch vs. Online learning
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Server

time t

In FL online learning:

• each silo has a stream of data

• online training/decision, i.e., learn from interaction

• e.g., personalized medical care 

feedback 
😃=  (📄, 💊)f

💊

📄

Batch vs. Online learning
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Server

In FL online learning:

• each silo has a stream of data

• online training/decision, i.e., learn from interaction

• e.g., personalized medical care 

time t + 1

Batch vs. Online learning
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Linear contextual bandits (LCB)[APS11]

Server

In FL LCBs (online):

• unknown reward feedback  is a linear function 


• ,  is the feature map,  is context and  is the action


•  is the unknown parameter


•  is zero-mean noise

f yt = x⊤
t θ* + ηt

xt = ϕ(ct, at) ∈ ℝd ϕ ct at

θ*
ηt

time t

feedback 
😃=  (📄, 💊)f

💊

📄

Performance metric:  group regret over  agents during  rounds M T

RM(T ) =
M

∑
i=1

T

∑
t=1

[max
a

ϕi(ct,i, a)⊤θ* − ϕi(ct,i, at,i)⊤θ*]
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Though locally stored data, privacy risks still exist

Server

Model parameters and updates can still reveal sensitive information

e.g., model inversion attacks [FJR15, HZL19] or membership inference attacks [SSS+17] 

😈

Adversary could also be other silos

i.e.,  collude to infer users in another silo

😈

😈

😈
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Differential privacy[DR14] — a rigorous privacy protection 

😈

[1] A more general view is via -divergence or Reny divergence between two distributions  f

How about privatizing  
all model updates?

By post-processing, this is also private😈

😈

😈

Differential Privacy 101

Definition. If for any two neighboring 
datasets  and , and any outcome 




Then,  satisfies -DP

      — DP means that outputs are “close” in 
probability[1] on two neighboring datasets

D D′ E
ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

M (ϵ, δ)

Key components: 
1. What are the neighboring datasets?  

— the identity for protection 
2. What are the outputs?   

— the view of adversary

Key properties: 
1. Composition, privacy loss adds up 
2. Post-processing, immune to further 

processing if data is not touched
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All communication from each silo is private

Server

[1] Similar privacy notion in different names exist in previous works, see [LR21, LHW+22]  

Silo-level LDP [1]

Definition (informal). The full transcript of 
communication between any agent  
and server are “close” in prob. on any two 
local neighboring datasets at agent 

i ∈ [M]

i

Local neighboring datasets at agent : a 
sequence of  users that differs in only one user 

— protect each user/patient

— different from standard DP for cross-device  
FL, where each client is protected

i
T

Outputs: full communication transcript 
— communicated models/messages

— communication schedule, i.e., when 
communication happens

t = 1 t = 5 t = 10
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The state-of-the-art[DP20]

[DP20] Differentially-private federated linear bandits. NeurIPS 2020

[Dubey&Pentland ’20]

Algorithm: federated LinUCB with Gaussian mechanism (tree-based)


Privacy: essentially the same as silo-level LDP


Regret:  additional regret due to privacy is 


Conclusion: match the regret achieved by a “super” single agent

Õ( MT/ϵ)

The imaginary “super” single agent

i.e., observe feedback immediately 

Hence, a “lower bound” for the FL 

Fundamental Gaps

Privacy leakage 

• The proposed algorithm fails to guarantee silo-level LDP 


• A simple attack can reveal sensitive information of users 

Incorrect regret 
• The claimed privacy cost is mis-calculated


• The correct one is  

• Hence, no longer match the “lower bound” 

Õ(M3/4 T/ϵ)



Contribution



Main Results

1. Identify the privacy and regret gaps in the state-of-the-art


2. Propose a generic federated algorithm with flexible privacy protocols


3. Achieve the correct regret bound under silo-level LDP, i.e., the privacy cost is 


4. Shave the additional  factor under shuffle differential privacy (SDP) — still a weak trust DP model

Õ(M3/4 T/ϵ)

M1/4

😈

😈

The communication schedule is not fully private

Observe when sync happens, other silos can infer the user in another silo 

Untrusted

The output of the shuffler is already private
Shuffler 
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Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

The communication schedule is not fully private

Observe when sync happens, other silos can infer the user in another silo 

😈

😈
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Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

Communication schedule for silos in SOTA 📩 

 

•   — all previous sync data among all silos 

•  — new non-private local data at silo  since recent sync 


•    — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

📩
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Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

Communication schedule for silos in SOTA 📩 

 

•   — all previous sync data among all silos 

•  — new non-private local data at silo  since recent sync 


•    — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f
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Server

Privacy Gap in SOTA
Dynamic communication leaks privacy

Communication schedule for silos in SOTA 📩 

 

•   — all previous sync data among all silos 

•  — new non-private local data at silo  since recent sync 


•    — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

😈 Malicious silo can take advantage of this to infer user’s sensitive data in another silo
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Server

Privacy Gap in SOTA
A simple toy-example attack

Communication schedule for silos in SOTA 📩 

 

•   — all previous sync data among all silos 

•  — new non-private local data at silo  since recent sync 


•    — sync function, shared among all silos

∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

😈

Alice

Bob

Hospital 1

Hospital 2

time t = 1

📄

📄

💊

💊

😃

☹

f(XAlice, Z = 0) > 0

f(XBob, Z = 0) ≤ 0

📩

What’s information of 
Alice can be inferred? 

Privacy leakage of Alice: Silo 2 can infer Alice’s data 
• Silo 2 observes new sync happens

• It knows that this sync is not triggered by itself

• Hence, it is due to silo 1, 


• Moreover,  is the same among silos
f(XAlice, Z = 0) > 0

f
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Server

Privacy Gap in SOTA
A simple toy-example attack

Communication schedule for silos in SOTA 📩 

 

•   — all previous sync data among all silos 

•  — new non-private local data at silo  since recent sync 


•    — sync function, shared among all silos


∃i ∈ [M], f(Xi, Z) > 0
Z
Xi i
f

😈

Alice

Bob

Hospital 1

Hospital 2

Privacy leakage of Alice  
Silo 2 gets to know   at time   f(XAlice, Z = 0) > 0 t = 1

Silo 2 knows the norm of Alice’s feature vector 

 

( , , , )

xAlice
2 > C := λ(eD − 1)

t = 1 t′ = 0 Z = 0 x1,1 = xAlice

Context info leaked via feature vector 
i.e., Alice may  have both diabetes and heart disease 

In particular, a sync triggered by silo  at time  if 





•  most resent sync before  and  some threshold


•  , i.e., feature vector 

i t

(t−t′ )log
det (Z+∑t

s=t′ +1 xs,ix⊤
s,i+λI)

det (Z+λI)
>D

t′ t D
xs,i = ϕ(cs,i, as,i)
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Regret Gap in SOTA
Miscalculated total privacy noise

Larger total privacy noise implies larger regret 
Ignore the privacy issue, the total amount of privacy noise in SOTA needs to be


 =  , i.e.,  factor of its current one (recall  is the no. silos)σ2
total M σ2 M M

Current conclusion in SOTA becomes ungrounded 
After the correction of  factor, the regret due to privacy changes from 


 (match the “lower bound” of a single agent)

to


  (has a gap of  compared to “lower bound”)

M
Õ( MT/ϵ)

Õ(M3/4 T/ϵ) M1/4



😈

Motivating Questions
1. How to address the privacy leakage? (💡 a fixed communication schedule may work, i.e., does not depend on user’s non-private data)  

2. How to correct the regret bound while preserving the privacy? 


3. How to close the gap compared to the “lower bound” ? (💡 need a way to get rid of  factor) 

4. If possible, can we achieve all of them via a generic method? (💡 a template algorithm with a template proof is preferred)

M

Privacy leakage of user’s feature vector 

(due to adaptive sync schedule)

😈

Regret gap to “lower bound” 

(due to  factor privacy noise)M



Our Approach
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Private-FedLinUCB
Private-FedLinUCB

(fixed batch sync of LinUCB with privacy)
Parameters: batch size , privacy protocol 


Initialize: ; , 


for  do 


for each agent  do 

, 


Estimate:  


UCB: 


Observe reward ; set 


Update local data: , 


if  then 

, 


Receive ,  from server


Reset 

B P = (R, S, A)

∀i, Wi = 0,Ui = 0 W̃syn = 0 Ũ syn = 0

t = 1,…, T

i = 1,…, M

Vt,i = λI + W̃syn + Wi Ut,i = Ũ syn + Ui

̂θt,i = V−1
t,i Ut,i

at,i = arg max
a

ϕ(ct,i, a)⊤ ̂θt + βt ϕ(ct,i, a)
V−1

t,i

yt,i xt,i = ϕ(ct,i, at,i)

Wi = Wi + xt,ix⊤
t,i Ui = Ui + xt,iyt,i

t mod B = 0

W̃syn = P({Wi}i∈[M]) Ũ syn = P({Ui}i∈[M])

W̃syn Ũ syn

Wi = 0,Ui = 0

Single agent LinUCB[APS11] 101
For :


1. Estimate :  ,  

     (  (“covariance”),  (“bias”) )


2.  UCB:   

( ,   — chosen via confidence bound)

t = 1,…, T
θ* ̂θt = V−1

t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsys

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

xt = ϕ(ct, at) βt

 —  sum of local covariance matrices at agent 

  —  sum of local bias vectors at agent  


 — private sync covariance matrices among all agents

 — private sync bias vectors among all agents

Wi i
Ui i
W̃syn
Ũ syn

 —  sum of regularizer,  sync and new local cov. matrices

  — sum of sync and new local bias vectors

Vt,i
Ut,i

, a template protocol for summation  (will discuss it soon)

 — local randomzier at agent side (on , )

 — shuffler or identity mapping, between agents, server

 — analyzer at server side

P = (R, S, A)
R Wi Ui
S
A
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Private-FedLinUCB
Private-FedLinUCB

(fixed batch sync of LinUCB with privacy)
Parameters: batch size , privacy protocol 


Initialize: ; , 


for  do 


for each agent  do 

, 


Estimate:  


UCB: 


Observe reward ; set 


Update local data: , 


if  then 

, 


Receive ,  from server


Reset 

B P = (R, S, A)

∀i, Wi = 0,Ui = 0 W̃syn = 0 Ũ syn = 0

t = 1,…, T

i = 1,…, M

Vt,i = λI + W̃syn + Wi Ut,i = Ũ syn + Ui

̂θt,i = V−1
t,i Ut,i

at,i = arg max
a

ϕ(ct,i, a)⊤ ̂θt + βt ϕ(ct,i, a)
V−1

t,i

yt,i xt,i = ϕ(ct,i, at,i)

Wi = Wi + xt,ix⊤
t,i Ui = Ui + xt,iyt,i

t mod B = 0

W̃syn = P({Wi}i∈[M]) Ũ syn = P({Ui}i∈[M])

W̃syn Ũ syn

Wi = 0,Ui = 0

Single agent LinUCB[APS11] 101
For :


1. Estimate :  ,  

     (  (“covariance”),  (“bias”) )


2.  UCB:   

( ,   — chosen via confidence bound)

t = 1,…, T
θ* ̂θt = V−1

t Ut

Vt = λI +
t−1

∑
s=1

xsx⊤
s Ut =

t−1

∑
s=1

xsys

at = arg max
a

ϕ(ct, a)⊤ ̂θt + βt ϕ(ct, a)
V−1

t

xt = ϕ(ct, at) βt

,a template protocol for summation  (will discuss it soon)

 — local randomzier at agent side (on , )

 — shuffler or identity mapping, between agents, server

 — analyzer at server side

P = (R, S, A)
R Wi Ui
S
A

Remark: fixed vs. adaptive schedule
• It now suffices to privatize each sent messages for silo-level LDP guarantee


—  and   is private at each sync round 


— without worrying privacy leakage via schedule 


—  needs to balance between comm. cost, regret, and privacy


• The problem in SOTA is: schedule depends on non-private data (i.e., )


— how about privatizing it first and then be adaptive?


— we show that it will lead to fundamental challenge in regret analysis

R(Wi) R(Ui) k ∈ [T/B]

B

Wi
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Distributed Tree-based alg. 
P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Differential Privacy 201
1. Gaussian mechanism for private sum of  bounded vectors


      i.e.,  is the private sum of  under -DP


, 


Intuition: change one data, the sum changes in , bounded by  

l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L2 log(1/δ)

ϵ2

l2 L

2. Continual private sum (essential for private online learning)


 i.e., a stream of data , compute  — priv. sum of  
γ1, …, γK s̃k

k

∑
s=1

γs

Simple Approach I: add noise ( ) to each 


— -DP (by post-processing) 

— total noise is  (❗)


Simple Approach II: add noise ( ) to each prefix sum


— total noise is  for all 


— -DP (by composition of DP) 

— i.e., for -DP, the total noise needs to be  (❗)

≈ 1/ϵ2 γs

(ϵ, δ)
K /ϵ2

≈ 1/ϵ2

1/ϵ2 k
≈ ( Kϵ, δ′ )

(ϵ, δ) K /ϵ2



A Generic Priv. Protocol

28

Distributed Tree-based alg. 
P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Differential Privacy 201
1. Gaussian mechanism for private sum of  bounded vectors


      i.e.,  is the private sum of  under -DP


, 


Intuition: change one data, the sum changes in , bounded by  

l2

s̃
n

∑
i=1

γi (ϵ, δ)

s̃ =
n

∑
i=1

γi + 𝒩(0,σ2I) σ2 ≈
L log(1/δ)

ϵ2

l2 L

2. Continual private sum (essential for private online learning)


 i.e., a stream of data , compute  — priv. sum of  
γ1, …, γK s̃ t

k

∑
s=1

γs

Tree-based algorithm [CSS11]: add noise to partial sum 
∑ [i, j]

Key observations: 
— each data affects at most  p-sums (  noise each) 
— each prefix sum needs at most  p-sums 

— total noise is still  ( ✅ ignore log factor )

O(log K) Õ (1/ϵ2)
O(log K)

Õ (1/ϵ2)

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]
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Distributed Tree-based alg. 
P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Differential Privacy 201

Tree-based algorithm [CSS11] for continual private sum


 i.e., a stream of data , compute  — priv. sum of  
γ1, …, γK s̃ t

k

∑
s=1

γs

γ1 γ2 γ3 γ4 γ5

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Sequential implementation (dynamically compute p-sum, tree node ) 
1. For each round , express  in binary form: 


2. Find index of first one 


3. Compute non-private p-sum: 


4. Private p-sum 


5. Final output 

k k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik = αik + 𝒩(0,σ2I)

s̃ k = ∑
j:Bin(k)=1

α̃j

(e.g., for , it is 110)k = 6
(for , )k = 6 ik = 1

(  —  stores the sum of  data)αj 2j

1

2

3

4

5

6

γ6 γ7 γ8

7

8

(for , [1,4] + [5,6])k = 6
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Distributed Tree-based alg. 

Differential Privacy 201

Tree-based algorithm [CSS11] for continual private sum


 i.e., a stream of data , compute  — priv. sum of  
γ1, …, γK s̃ t

k

∑
s=1

γs

γ1 γ2 γ3 γ4 γ5

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Sequential implementation (dynamically compute p-sum, tree node ) 
1. For each round , express  in binary form: 


2. Find index of first one 


3. Compute non-private p-sum: 


4. Private p-sum 


5. Final output 

k k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik = αik + 𝒩(0,σ2I)

s̃ k = ∑
j:Bin(k)=1

α̃j

(e.g., for , it is 110)k = 6
(for , )k = 6 ik = 1

(  —  stores the sum of  data)αj 2j

1

2

3

4

5

6

γ6 γ7 γ8

7

8

(for , [1,4] + [5,6])k = 6

P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Procedure: Local Randomizer  at each agent 


for each sync  do 

Express  in binary form: 


Find index of first one 


Compute non-private p-sum: 


Output noisy p-sum 

R i ∈ [M]

k = 1,…, K

k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik,i = αik + 𝒩(0,σ2I)

Procedure:  Analyzer  at server


for each sync  do 

Express  in binary form and find index of first one 


Add noisy p-sums from all agents 


Output total sum: 

A

k = 1,…, K

k ik
α̃ik = ∑

i∈[M]

α̃ik,i

s̃ k = ∑
j:Bin(k)=1

α̃j

{Procedure: Shuffler  (could be empty or identity mapping)S



Private-FedLinUCB
(fixed batch sync of LinUCB with privacy)

Parameters: batch size , privacy protocol 


Initialize: ; , 


for  do 


for each agent  do 

, 


Estimate:  


UCB: 


Observe reward ; set 


Update local data: , 


if  then 

, 


Receive ,  from server


Reset 

B P = (R, S, A)

∀i, Wi = 0,Ui = 0 W̃syn = 0 Ũ syn = 0

t = 1,…, T

i = 1,…, M

Vt,i = λI + W̃syn + Wi Ut,i = Ũ syn + Ui

̂θt,i = V−1
t,i Ut,i

at,i = arg max
a

ϕ(ct,i, a)⊤ ̂θt + βt ϕ(ct,i, a)
V−1

t,i

yt,i xt,i = ϕ(ct,i, at,i)

Wi = Wi + xt,ix⊤
t,i Ui = Ui + xt,iyt,i

t mod B = 0

W̃syn = P({Wi}i∈[M]) Ũ syn = P({Ui}i∈[M])

W̃syn Ũ syn

Wi = 0,Ui = 0

P = (R,S,A), privacy protocol
(distributed version of Tree-based algorithm)

Procedure: Local Randomizer  at each agent 


for each sync  do 

Express  in binary form: 


Find index of first one 


Compute non-private p-sum: 


Output noisy p-sum 

R i ∈ [M]

k = 1,…, K

k k = ∑
j

Binj(k) ⋅ 2j

ik = min{j : Binj(k) = 1}
αik = ∑

j<ik

αj + γk

α̃ik,i = αik + 𝒩(0,σ2I)

Procedure:  Analyzer  at server


for each sync  do 

Express  in binary form and find index of first one 


Add noisy p-sums from all agents 


Output total sum: 

A

k = 1,…, K

k ik
α̃ik = ∑

i∈[M]

α̃ik,i

s̃ k = ∑
j:Bin(k)=1

α̃j

Putting them together
• Each agent runs two privacy protocol — sum of covariance matrices (i.e., ) and sum of  bias vectors (i.e., ) 

• The datapoint  is a batch of data — total matrices or vectors during the th batch

• The sensitivity does not scale with respect to 

Wi Ui
γk k

B

γbias
k =

kB

∑
t=(k−1)B+1

xtyt

γcov
k =

kB

∑
t=(k−1)B+1

xtx⊤
t



γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

32

Algorithm in action
Illustration

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γbias
6 =

6B

∑
t=5B+1

xtyt

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

=
Ũ syn

+

Private sum across both time and agents

M

∑
i=1

6B

∑
t=1

xt,iyt,i

How about 
summing over time at 

each agent? 



γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

33

An alternative protocol
Palt

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γbias
6 =

6B

∑
t=5B+1

xtyt

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Server simply aggregates

First sum over time at each agent

=

[1,6]



γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]
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An alternative protocol
Palt

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γbias
6 =

6B

∑
t=5B+1

xtyt

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Server simply aggregates

First sum over time at each agent

=

[1,6]

Remark: comparisons
• As we will see, both protocols work for silo-level LDP


— same regret under same -DP 


• However, for shuffle DP, things are different


— our protocol manages to close the gap


—  fails to close the gap

(ϵ, δ)

Palt (more on this later…😉)



Theoretical Results



Fix the issues in SOTA
Federated LCBs under Silo-level LDP

 Theorem 1 (Performance under silo-level LDP, informal)

Let batch size , privacy noise in   be  with . Then, Private-FedLinUCB enjoys 


1. Privacy — -silo-level LDP for any 


2. Regret  — 


3. Communication —  rounds of sync between agents and server

B = T/M P σ2 = 8κ ⋅
log(2/δ) + ϵ

ϵ2
κ = 1 + log(T/B)

(ϵ, δ) ϵ > 0, δ ∈ (0,1)

RM(T ) = non-private regret + T
(Md)3/4log1/4(1/δ)

ϵ

MT
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Remark: comparisons with related work
1. Compared with SOTA[DP20] 

— privacy: we fix the privacy leakage, thanks to the fixed-batch schedule and tree-based algorithm 


— regret: we establish the correct privacy cost, i.e., the additional regret due to privacy now scales with  (instead of ) 


— communication: communication is worse than SOTA ( ) due to fixed-batch comm.  But, note that there exists privacy leakage 

2. Compared with “super” single agent under central DP[SS18] 

— our regret is  factor worse than this “lower bound”

M3/4 M

Tvs . log T

M1/4



Match the “lower bound”
Federated LCBs under SDP
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Differential Privacy 501

1. What is shuffle DP (SDP)? 
— formally defined in [CSUZZ19]

— , “the output of shuffler is private”

— (change any , the outputs are “close”)

P = (R, S, A)
di

“private”

2. How to achieve it? 
— one way is via LDP amplification, e.g., [FMT20]

— shuffle  LDP outputs (each -DP), then it is  SDP


— “reduce the privacy loss by a factor of  ✅” 
— (intuition: hiding among clones)

n ϵ0 ≈ ϵ0/ n
1/ n

ϵ0

ϵ0

ϵ0

ϵ0

n

Rd1

d2 R

S
Rdn

A

… …



Match the “lower bound”
Federated LCBs under SDP
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Differential Privacy 501

1. What is shuffle DP (SDP)? 
— formally defined in [CSUZZ19]

— , “the output of shuffler is private”

— (change any , the outputs are “close”)

P = (R, S, A)
di

“private”

2. How to achieve it? 
— one way is via LDP amplification, e.g., [FMT20]

— shuffle  LDP outputs (each -DP), then it is  SDP


— “reduce the privacy loss by a factor of  ✅” 
— (intuition: hiding among clones)

n ϵ0 ≈ ϵ0/ n
1/ n

ϵ0

ϵ0

ϵ0

ϵ0

n

Rd1

d2 R

S
Rdn

A

… …

How about 
adding shuffler between 

agents and server? 
 1/ M

Good news: this amplification can close the gap ✅


Bad news: one cannot directly use existing results ❗


— they only amplify LDP (  oper. on single data)


— in our case,  oper. on multiple datapoints 


— (this leads to key difference in the analysis)

R

R

A new amplification lemma is derived ✅

— tailored for Gaussian DP mecha.

— avoid group privacy

— control the blow up in δ

Clones are harder to create due to multiple local points

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]



Match the “lower bound”
Federated LCBs under SDP
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 Theorem 2 (Performance under SDP, informal)

Let batch size  and , privacy noise in   be  . Then, Private-FedLinUCB (with shuffler) enjoys 


1. Privacy — -SDP for any , where  are constants


2. Regret  — 


3. Communication —  rounds of sync between agents and server

B = T/M κ = 1 + log(T/B) P σ2 = Õ ( κ log(1/δ)
ϵ2M )

(ϵ, δ) ϵ ∈ (0,
κ

C1T M ), δ ∈ (0,
κ

C2T ) C1, C2

RM(T ) = non-private regret + MT
d3/4 log3/4(Mκ /δ)

ϵ

MT

Match the “lower bound” 
Privacy cost is on the order of  MT

Minimum modifications 
Compared to silo-level LDP, one only needs to


— add a shuffler 

— adjust the noise in local randomizer R

Privacy holds for small  only 
This comes from two factors due to amplification lemma


—  is the standard term 


—  is the new term due to multiple local points

ϵ

1/ M
1/T

How to improve the privacy 
guarantees?



Leverage vector-sum protocol
Federated LCBs under SDP
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Differential Privacy 502

2. Performance of  
— it guarantees SDP for all 


— the injected noise is  per entry (indep. of n ) 

(Essentially, it simulates central model without a trusted server)

Pvec
ϵ ∈ (0,15), δ ∈ (0,1/2)

L2

ϵ2
log2(d /δ)

Rd1

d2 R

S
Rdn

A

… …

1. How to achieve SDP?  
— instead of using amplification lemma

— one can use specific shuffle protocol

— [CJMP21] is one example  Pvec = (Rvec, S, Avec)

“  vectors with -norm ”n l2 L



Leverage vector-sum protocol
Federated LCBs under SDP
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Differential Privacy 502

2. Performance of  
— it guarantees SDP for all 


— the injected noise is  per entry (indep. of n ) 

(Essentially, it simulates central model without a trusted server)

Pvec
ϵ ∈ (0,15), δ ∈ (0,1/2)

L2

ϵ2
log2(d /δ)

Rd1

d2 R

S
Rdn

A

… …

1. How to achieve SDP?  
— instead of using amplification lemma

— one can use specific shuffle protocol

— [CJMP21]  is one example  Pvec = (Rvec, S, Avec)

“  vectors with -norm ”n l2 L

Can we simply use 
 to add all p-sums 

across  agents? 
Pvec

M

The norm of p-sum could be linear with  ❗ 

— sum of  p-sums with  (i.e., )


— each data point has a large norm

T

M Pvec n = M

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

View  in  as data points across agents 

—e.g., for 


— each p-sum has  points


—  with each norm bounded


— each sync incurs only  noise ✅

n Pvec

k = 6

2B

n = M ⋅ 2B

1/ϵ2



γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]
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Algorithm in action
With Pvec

time t = 6B
Hospital B

Hospital A

Hospital C

…

…

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

=
Ũ syn

+

Private sum across both time and agents

M

∑
i=1

6B

∑
t=1

xt,iyt,i

 (the 6-th communication)

[……] [……]

A batch of bias vectors

[……] [……]

[……] [……]

…
…

…
…

…
…
…
…
…
…
…
…

Pvec

n = 2B ⋅ M



Improved privacy via Pvec

Federated LCBs under SDP
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 Theorem 3 (Performance under SDP via , informal)Pvec

Let batch size  and . Combine  with our privacy protocol. Then, Private-FedLinUCB enjoys 


1. Privacy — -SDP for any , 


2. Regret  — 


3. Communication —  rounds of sync between agents and server

B = T/M κ = 1 + log(T/B) Pvec
(ϵ, δ) ϵ ∈ (0,60), δ ∈ (0,1)

RM(T ) = non-private regret + MT
d3/4 log3/4(Mκ /δ)

ϵ

MT

Match the “lower bound” 
Privacy cost is on the order of  MT

A more complicated algorithm 
— need 

— need store all data points

Pvec
Privacy holds for a wide range of  

This significantly improve upon the one via amplification
ϵ



Analysis



“One-line” proof for regret
A Generic Analysis 
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 Proposition 1 (Generic regret bound under PNC, informal)

Suppose that the privacy protocol satisfies PNC with parameter , then Private-FedLinUCB enjoys the following regret with high probability σ2
tot

Privacy Noise Condition (PNC) 

For any , let  be total privacy noise injected in  and , respectively


1.  be a random vector, each entry is zero mean sub-Gaussian with variance at most 


2.  be a random symmetric matrix, each entry is zero mean sub-Gaussian with variance at most 

t = kB Nt,i, nt,i

t

∑
s=1

xs,ix⊤
s,i

t

∑
s=1

xs,iys,i

∑
i∈[M]

nt,i σ2
tot

∑
i∈[M]

Nt,i σ2
tot

RM(T ) = Õ (dMB + d MT + σtotMTd3/4)
Cost due to batching Standard regret Cost due to privacy

Aggregated prefix sum

(sum over time and agents)
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Total Privacy Noise
Silo-level LDP

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy:  σtotMT

…
…
…

 privacy noise in each p-sum

(thanks to binary tree)

Õ(1/ϵ2)

 privacy noise in aggregated p-sum

(sum of  noise)

Õ(M/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,  


(sum of  noise)

Õ(M/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under silo-level LDP: Õ(M3/4 T/ϵ)
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Total Privacy Noise
SDP via Amp.

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy:  σtotMT

…
…
…

 privacy noise in each p-sum

(thanks to binary tree and amplification)

Õ(1/Mϵ2)

 privacy noise in aggregated p-sum

(sum of  noise)

Õ(1/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,  


(sum of  noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ( MT/ϵ)
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Total Privacy Noise
SDP via Pvec

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy:  σtotMT

…
…
…

 privacy noise in aggregated p-sum

(each datapoint only in   )

Õ(1/ϵ2)
log K Pvec

 privacy noise in aggregated prefix sum

i.e.,  


(sum of  noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ( MT/ϵ)

[……] [……]

[……] [……]

…… …… ………… Pvec
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Importance of p-sum
Why  fails for SDPPalt

Prop. 1. Regret due to privacy:  σtotMT

Regret under SDP: Õ( MT/ϵ)
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Importance of p-sum
SDP via Amp.

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy:  σtotMT

…
…
…

 privacy noise in each p-sum

(thanks to binary tree and amplification


And each data point only in  shuffle outputs)

Õ(1/Mϵ2)

log K

 privacy noise in aggregated p-sum

(sum of  noise)

Õ(1/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,  


(sum of  noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ( MT/ϵ)
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Importance of p-sum
SDP via Amp.

Hospital 1

Hospital M

…

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

∑ [1,2]

∑ [1,4]
∑ [1,8]

∑ [5,6]

Prop. 1. Regret due to privacy:  σtotMT

…
…
…

 privacy noise in each prefix sum

But, this cannot ensure -SDP  

(each data point in  shuffle outputs 
hence, composition is required) 

As a result, more noise is required!

Õ(1/Mϵ2)
(ϵ, δ)

K

 privacy noise in aggregated p-sum

(sum of  noise)

Õ(1/ϵ2)
M

 privacy noise in aggregated prefix sum

i.e.,  


(sum of  noise)

Õ(1/ϵ2)
σ2

tot
log K

Private sum across both time and agents

M

∑
i=1

kB

∑
t=1

xt,iyt,i = Ũ syn

=+

Regret under SDP: Õ( MT/ϵ)



Simulations





Discussions



Q1: Can we further reduce 
comm. cost to log T

Then, it might need adaptive 
update based on determinant 
condition. Challenges exist in 

private case

Q2: Silo-level LDP/
SDP vs. other privacy 
notions in contextual 

bandits?

We give a comprehensive 
discussions on difference and 

connections

Q3: What if users even do 
not trust each local agent?

It turns out that a simple tweak of 
our algorithm can handle this 

situation

Q4: 
What if users 

participate multiple times ? 
(within one silo or across 

silos) 

One can use composition or group 
privacy to handle. Or directly 
analyze the total sensitivity

Q5: How to balance 
between privacy and 

algorithm complexity?

Good question. We are working on 
it right now

Q6: Can we generalize it to 
federated RL

Yes, at least for RL with linear 
function approximation



One last thing…



Recent Research…
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• Private MAB  
— “MAB under local DP with tight lower bound” [RZLS20, arxiv] 
— “the state-of-the-art of private MAB for all three DP models” [CZ*23, ICLR23] 
— “private and robust MAB” [WZ*TW23, submitted]

[Z* means co-primary authors]

• Private Contextual Bandits  
— “linear contextual bandits under shuffle model” [CZ*22, ICML22] 
— “federated LCBs under both silo-level LDP and SDP [ZC, arixv, submitted] 
— “kernel bandits under local model” [ZT21, AAAI21] 
— “private linear bandits with distributed feedback” [LZJ22, WiOpt22, Best Student Paper] 
— “private distributed kernel bandits” [LZJ23, Sigmetrics23]

• Private RL 
— “A comprehensive study of tabular RL under both central and local DP models” [CZ*22, AAAI22, oral]

— “The first study of private RL with linear function approximation”[Z22, Sigmetrics22] 
— “Study of private LQR” [CZ*S21, ISIT21]

Many interesting open problems in 
this area… 

Collaborations are welcome 🎉

Many thanks to all my collaborators
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