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Ads recommendation example
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Ads recommendation example
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Multi-Armed Bandits

Regret minimization

Prob. of reward = 1




Privacy Concern

Reward is sensitive
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Differential Privacy

Central model
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Differential Privacy

Central model

Key: ensure that each model update is DP
By post-processing of DP, the outputs (i.e., actions) are DP



Differential Privacy

Central model
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Key: ensure that each model update is DP
By post-processing of DP, the outputs (i.e., actions) are DP
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Optimal Regret in MAB

Central model
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[Sajed & Sheffet’19]

Algorithm: successive arm elimination + batching + Laplace noise

Privacy : pure DP , i.e., (¢,0)-DP

KlogT>
€

Regret: optimal non-private regret + © <

&

Only an additive privacy cost
And it is optimal!



Differential Privacy

Local model

Untrusted




Differential Privacy

Local model
il

Untrusted

Key: ensure that each user’s output is DP, which implies central DP
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Differential Privacy

For any two neighboring datasets D

Optimal Reg ret in MAB and D’, and any outcome E

PM(D) e E) LePMD') € E)+6

Local model

R(Lap) [ An adversary can observe user's output directly
‘ Webpage
6 Y
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Untrusted

[Ren, Zhou, Liu, Shroff’20]

: . . toal t of noi
Algorithm: Laplace noise at local side + UCB D.ue © @ 1arge amount o NOISe
Privacy cost is now multiplicative

Privacy : pure DP, i.e., (¢,0)-DP

1
Regret. ~ ) optimal non-private regret
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Differential Privacy

For any two neighboring datasets D

Diffe e ntial Privacy and D, and any outcome E

T P(M(D) € E) < e’P(M(D") € E) + 6
Distributed model
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Key: ensure that the output of the third party is DP, which again implies central DP
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Differential Privacy

For any two neighboring datasets D

Distributed DP iIn MAB

PMD) e E) <e‘PMD) e E)+ o
Shuffle model
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[Tenenbaum, Kaplan, Mansou, Stemme’21] [Limitations]

Algorithm: successive arm elimination + batching + shuffle protocol Privacy: only approximate DP rather than pure DP

Privacy: approximate DP , i.e., (€, 0)-DP Regret: not optimal, additional log factors

K log T/log(1/6)

€

Communication: current scheme only works for binary reward
* adapt to other scheme incurs extensive communication

Regret: optimal non-private regret + O




Is there a communication-efficient MAB algorithm that satisfies pure DP in the
distributed model

while attaining the optimal regret bound?
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Main Results
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Key: ensure that the output of the third party is DP
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The first algorithm to achieve optimal regret with pure DP in distributed model

The first algorithm to achieve RDP using only discrete privacy noise

A unified algorithmic framework for achieving optimal regret under central, local, distributed model

Extensive simulations and experiments to validate our theoretical results
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Our Algorithm
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Given output from SecAgg, y, try to calculate z = A()) ~ Z X

l
=1

n
Given y{, ¥, ..., Y, output y = Z y;, | mod m
i=1
This alone does not provide formal privacy
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Our Algorithm

@ Current active actions FFAd Ad
: n Webpage X1 :
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Our Algorithm

Batch size: [(b) = 2°

Batch size: [(b) = 2°
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Ad Ad
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@ = after action elimination FAd
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Our Algorithm

@ = Current active action FSAd

---------------------------------

Untrusted

Batch size: [(b) = 20!

i BH H H H = =H =H H H EH H = H H = =H = H H EH =H H H H BHE = = =B H = = = = =B = W
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Analyzer A

Our Algorithm T oo

Input y, Output z

@ = Current active action Ad

T T T T T e ST fy>ng+7.2=(—m)/g;elsez=Yy/g
Webpage X R(x)
A . y; = R(x,
| e Ad e, >
X2 ¥, = R(x,) Untrusted

Batch size: [(b) = 20!

How to choose privacy noise?

Local Randomizer R
[Balle et al’ 20, Cheu & Yan’ 21]

Input x; € [0,1], Output y,

i BH H H H = =H =H H H EH H = H H = =H = H H EH =H H H H BHE = = =B H = = = = =B = W
A = = = I = = == = = = = = = == I == I = = = == = = = = = = =5 =B =B =B = = =m = .

|x;g]+Ber(x;g — |xgl) . (&;+#n) modm
Aj X: V;
> l » 1
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Achieving Pure DP

Simulate discrete Laplace using Polya noise

Theorem 1 (Pure-DP via SecAgg)

Fix e > 0 and T. For each batch b, the noise 7, = y; — y;_, where yt,y7 ~'4 Poyla(1/n, e~%).

l
There exist proper choices of g, m, T such that

Privacy: pure DP in the distributed model

K log T)
€

Regret: optimal non-private regret + © (

Communication: bits scales logarithmically with the batch size

Local Randomizer R
[Balle et al’ 20, Cheu & Yan’ 21]

Input x; € [0,1], Output y,

|x;g |+ Ber(x;g — | x;g])

X;

(X; +1n,) mod m
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Achieving Pure DP

Simulate discrete Laplace using Polya noise

Theorem 1 (Pure-DP via SecAgg)

Fix € > 0 and 7. For each batch b, the noise 17; = y;" — y;, where y;", y;- ~t4 Poyla(1/n, e=¢8).

l
There exist proper choices of g, m, T such that

Privacy: pure DP in the distributed model

€
Communication: bits scale logarithmically with the batch size

K log T)

Regret: optimal non-private regret + © (

Remark on privacy Remark on regret Remark on communication
* First result on pure DP in distribute model for MABs  Match the optimal regret under central model e Only communicate bits

* Also achieve pure DP using advanced shuffle protocol * Only use discrete privacy noise, w/o finite precision approx * Previous works scale polynomially
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(a, e(a))-RDP

ACh iGVi n g R D P For any two neighboring datasets D and D’, and any

_ outcome E, D (M(D), M(D")) < e(a)
Skellam noise

Theorem 2 (RDP via SecAgg) 2

Fix € > 0 and T. For each batch b, let the noise be 7, ~ SK'{ 0, - 2
ne

There exist proper choices of g, m, T such that

a€2

Privacy: ~ (CZ, T)- RDP

Ky/logT

Regret: ~ optimal non-private regret + ¢
€

Communication: scales logarithmically with the batch size
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Achieving RDP

Skellam noise

Theorem 2 (RDP via SecAgg) 2

Fix € > 0 and T. For each batch b, let the noise be 7, ~ SK'{ 0, - 2
ne

There exist proper choices of g, m, T such that

a€2

Privacy: ~ (CZ, T)- RDP

Ky/logT

Regret: ~ optimal non-private regret + ¢
€

Communication: scales logarithmically with the batch size
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Proposition (Tail bound of Skellam noise)

Skellam random variable has a sub-exponential tail




Achieving RDP

Skellam noise

Theorem 2 (RDP via SecAgg) g2

Fix e > 0 and 7. For each batch b, let the noise be i7; ~ SK | O, —2
ne

There exist proper choices of g, m, T such that

a€2

Privacy: ~ (CZ, T)- RDP

Ky/logT

Regret: ~ optimal non-private regret + ¢
€

Communication: scales logarithmically with the batch size

Remark 1 (Conversion to approximate DP) Remark 2 (Tight privacy accounting)

o After conversion, it is 4/log T tighter than SOTA » Useful for analyzing returning users
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Remark 3 (RDP in other models)
e Qur algorithm can be adapted to central and local

* Hence, the first result of RDP guarantees




Simulations
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