## **Distributed Differential Privacy** in Multi-Armed Bandits Xingyu Zhou\*, Sayak Ray Chowdhury\*

Wayne State University, Microsoft Research, India

\* Equal Contributions

dia

### **Multi-Armed Bandits** Ads recommendation example



## **Multi-Armed Bandits** Ads recommendation example







## **Multi-Armed Bandits** Regret minimization









## Privacy Concern **Reward is sensitive**





.

### **Differential Privacy**

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\varepsilon} \mathbb{P}(M(D') \in E) + \delta$ 



.

### **Differential Privacy**

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 





.



**Differential Privacy** 

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 

### User sends raw data to server directly









**Differential Privacy** 

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 





**Differential Privacy** 

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 



## **Optimal Regret in MAB Central model**





**Differential Privacy (** $\epsilon$ ,  $\delta$ **)** 

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\varepsilon} \mathbb{P}(M(D') \in E) + \delta$ 



### **Differential Privacy** Local model

.

### **Differential Privacy**

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 





## **Differential Privacy** Local model

.



**Differential Privacy** 

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 

An adversary can observe user's output directly



Key: ensure that each user's output is DP, which implies central DP



## **Optimal Regret in MAB** Local model





### An adversary can observe user's output directly

### **Differential Privacy**

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 





## **Differential Privacy Distributed model**

•



**Differential Privacy** 

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 

### User trusts the third party





## Distributed DP in MAB Shuffle model



[Tenenbaum, Kaplan, Mansou, Stemme'21]

**Algorithm:** successive arm elimination + batching + shuffle protocol

**Privacy**: approximate DP , i.e.,  $(\epsilon, \delta)$ -DP

**Regret**: optimal non-private regret + **O** 

$$\frac{K\log T\sqrt{\log(1/\delta)}}{\epsilon}$$



For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 





Shuffler

[Limitations]

**Privacy**: only approximate DP rather than pure DP

**Regret**: not optimal, additional log factors

**Communication**: current scheme only works for binary reward \* adapt to other scheme incurs extensive communication





## Distributed DP in MAB Shuffle model



[Tenenbaum, Kaplan, Mansou, Stemme'21]

Algorithm: successive arm elimination + batching + shuffle protocol

 $K \log T_{\rm I}/\log(1/\delta)$ 

**Privacy**: approximate DP , i.e.,  $(\epsilon, \delta)$ -DP

**Regret**: optimal non-private regret + *O* 

User trusts the third party

### **Differential Privacy**

For any two neighboring datasets D

and D', and any outcome E

 $\mathbb{P}(M(D) \in E) \le e^{\epsilon} \mathbb{P}(M(D') \in E) + \delta$ 

| Iffler | [Limitations]                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------|
|        | <b>Privacy:</b> only approximate DP rather than pure DP                                                                      |
|        | Regret: not optimal, additional log factors                                                                                  |
|        | <b>Communication</b> : current scheme only works for binary reward<br>* adapt to other scheme incurs extensive communication |
|        | Iffler                                                                                                                       |



|   |  |  | ľ |
|---|--|--|---|
|   |  |  |   |
|   |  |  |   |
|   |  |  |   |
| J |  |  |   |
| X |  |  |   |
|   |  |  |   |
|   |  |  |   |

## Contribution

## Main Results



- 1. The first algorithm to achieve optimal regret with pure DP in distributed model
- 2. The first algorithm to achieve RDP using only discrete privacy noise
- 3. A unified algorithmic framework for achieving optimal regret under central, local, distributed model
- 4. Extensive simulations and experiments to validate our theoretical results



Given 
$$y_1, y_2, ..., y_n$$
, output  $\hat{y} = \left(\sum_{i=1}^n y_i\right)$   
This alone does not provide formal prive

Each local randomizer adds privacy noise on reward

.



Batch size:  $l(b) = 2^b$ 







= after action elimination



•

Batch size:  $l(b) = 2^{b+1}$ 





.

Batch size:  $l(b) = 2^{b+1}$ 



#### Analyzer A

[Balle et al' 20, Cheu & Yan' 21] Input  $\hat{y}$ , Output *z* 

If  $\hat{y} > ng + \tau$ :  $z = (\hat{y} - m)/g$ ; else  $z = \hat{y}/g$ 





## **Achieving Pure DP** Simulate discrete Laplace using Polya noise

### **Theorem 1 (Pure-DP via SecAgg)**

Fix  $\epsilon > 0$  and T. For each batch b, the noise  $\eta_i = \gamma_i^+ - \gamma_i^-$ , where  $\gamma_i^+, \gamma_i^- \sim^{i.i.d} Poyla(1/n, e^{-\epsilon/g})$ . There exist proper choices of  $g, m, \tau$  such that

**Privacy:** pure DP in the distributed model

**Regret**: optimal non-private regret +  $\Theta\left(\frac{K\log T}{\epsilon}\right)$ 

**Communication: bits** scales logarithmically with the batch size

#### Local Randomizer R

[Balle et al' 20, Cheu & Yan' 21] Input  $x_i \in [0,1]$ , Output  $y_i$ 

 $\begin{array}{c} [x_ig] + \operatorname{Ber}(x_ig - [x_ig]) \\ \chi_i & \longrightarrow \\ \end{array} \\ \hat{\chi}_i & \xrightarrow{(\hat{x}_i + \eta_i) \mod m} \\ y_i \end{array}$ 



## **Achieving Pure DP** Simulate discrete Laplace using Polya noise

### **Theorem 1 (Pure-DP via SecAgg)**

Fix  $\epsilon > 0$  and T. For each batch b, the noise  $\eta_i = \gamma_i^+ - \gamma_i^-$ , where  $\gamma_i^+, \gamma_i^- \sim^{i.i.d} Poyla(1/n, e^{-\epsilon/g})$ . There exist proper choices of  $g, m, \tau$  such that

**Privacy:** pure DP in the distributed model

**Regret**: optimal non-private regret +  $\Theta\left(\frac{K\log T}{\epsilon}\right)$ 

Communication: bits scale logarithmically with the batch size

#### **Remark on privacy**

- First result on pure DP in distribute model for MABs
- Also achieve pure DP using advanced shuffle protocol

#### **Remark on regret**

• Match the optimal regret under central model • Only use discrete privacy noise, w/o finite precision approx

#### **Remark on communication**

- Only communicate bits
- Previous works scale polynomially



## Achieving RDP Skellam noise

**Theorem 2 (RDP via SecAgg)** Fix  $\epsilon > 0$  and *T*. For each batch *b*, let the noise be  $\eta_i \sim SK\left(0, \frac{g^2}{n\epsilon^2}\right)$ . There exist proper choices of  $g, m, \tau$  such that **Privacy:**  $\approx (\alpha, \frac{\alpha\epsilon^2}{2})$ - RDP **Regret:**  $\approx$  optimal non-private regret +  $\Theta\left(\frac{K\sqrt{\log T}}{\epsilon}\right)$ **Communication:** scales logarithmically with the batch size

### $(\alpha, \epsilon(\alpha))$ -RDP

For any two neighboring datasets D and D', and any outcome E,  $D_{\alpha}(M(D), M(D')) \leq \epsilon(\alpha)$ 





## Achieving RDP Skellam noise

**Theorem 2 (RDP via SecAgg)** Fix  $\epsilon > 0$  and *T*. For each batch *b*, let the noise be  $\eta_i \sim SK\left(0, \frac{g^2}{n\epsilon^2}\right)$ . There exist proper choices of *g*, *m*,  $\tau$  such that **Privacy:**  $\approx (\alpha, \frac{\alpha\epsilon^2}{2})$ - RDP **Regret:**  $\approx$  optimal non-private regret +  $\Theta\left(\frac{K\sqrt{\log T}}{\epsilon}\right)$ **Communication:** scales logarithmically with the batch size **Proposition (Tail bound of Skellam noise)** 

Skellam random variable has a sub-exponential tail





## **Achieving RDP Skellam noise**

**Theorem 2 (RDP via SecAgg)** Fix  $\epsilon > 0$  and *T*. For each batch *b*, let the noise be  $\eta_i \sim SK\left(0, \frac{g^2}{n\epsilon^2}\right)$ . There exist proper choices of  $g, m, \tau$  such that **Privacy:**  $\approx (\alpha, \frac{\alpha \epsilon^2}{2})$ - RDP **Regret:**  $\approx$  optimal non-private regret +  $\Theta\left(\frac{K\sqrt{\log T}}{\epsilon}\right)$ **Communication:** scales logarithmically with the batch size





#### **Remark 2 (Tight privacy accounting)**

#### **Remark 3 (RDP in other models)**

- Our algorithm can be adapted to central and local
- Hence, the first result of RDP guarantees



## Simulations



# Thank you!