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Ads recommendation example
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Regret minimization
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Reward is sensitive
Webpage

Ad😀 Ad
😀

Webpage

☹

Webpage

☹☹☹

Ad

Ad

Ad
☹

Ad
☹

Ad
☹
😀

Ad
☹

……

Webpage😈
Ad

An adversary could infer other’s reward and hence sensitive info 

Via the output of MAB algorithm  

The feedback could reveal personal information 



Differential Privacy

6

Central model

Differential Privacy

For any two neighboring datasets  

and , and any outcome 


D

D′ E

ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ
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Central model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

Trusted
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Central model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E
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Central model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E
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Key: ensure that each model update is DP

By post-processing of DP, the outputs (i.e., actions) are DP   
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Central model
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Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

Key: ensure that each model update is DP

By post-processing of DP, the outputs (i.e., actions) are DP   

Trusted

User sends raw data to server directly
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Central model
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Differential Privacy ( )ϵ, δ

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

[Sajed & Sheffet’19]

Trusted

Algorithm: successive arm elimination + batching + Laplace noise 

Privacy : pure DP , i.e., -DP(ϵ,0)

User sends raw data to server directly

Regret: optimal non-private regret +   Θ ( K log T
ϵ )

Only an additive privacy cost

And it is optimal!
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Local model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

Untrusted
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Local model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ
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An adversary can observe user’s output directly  
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Key: ensure that each user’s output is DP, which implies central DP  
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Local model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ
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An adversary can observe user’s output directly  

😈

😈

😈

[Ren, Zhou, Liu, Shroff’20]

Algorithm: Laplace noise at local side + UCB 

Privacy : pure DP , i.e., -DP(ϵ,0)

Regret:   optimal non-private regret  ≈
1
ϵ2

Due to a large amount of noise

Privacy cost is now multiplicative 

14

R(Lap)

R(Lap)

R(Lap)
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Distributed model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ
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😈Secure 
Protocol

User trusts the third party

Key: ensure that the output of the third party is DP, which again implies central DP  
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Shuffle model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E
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User trusts the third party

Shuffler [Tenenbaum,  Kaplan,  Mansou, Stemme’21]

Algorithm: successive arm elimination + batching + shuffle protocol

Privacy: approximate DP , i.e., -DP(ϵ, δ)

Regret: optimal non-private regret +   O (
K log T log(1/δ)

ϵ )

[Limitations]

Privacy:  only approximate DP rather than pure DP

Regret:  not optimal, additional log factors

Communication: current scheme only works for binary reward

* adapt to other scheme incurs extensive communication
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Shuffle model

Differential Privacy

For any two neighboring datasets D 

and D’, and any outcome E


ℙ(M(D) ∈ E) ≤ eϵℙ(M(D′ ) ∈ E) + δ

Untrusted
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☹

Ad
☹

😈

User trusts the third party

Shuffler [Tenenbaum,  Kaplan,  Mansou, Stemme’21]

Algorithm: successive arm elimination + batching + shuffle protocol

Privacy: approximate DP , i.e., -DP(ϵ, δ)

Regret: optimal non-private regret +   O (
K log T log(1/δ)

ϵ )

[Limitations]

Privacy:  only approximate DP rather than pure DP

Regret:  not optimal, additional log factors

Communication: current scheme only works for binary reward

* adapt to other scheme incurs extensive communication

Is there a communication-efficient MAB algorithm that satisfies pure DP in the 
distributed model  

while attaining the optimal regret bound? 
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1. The first algorithm to achieve optimal regret with pure DP in distributed model        

2. The first algorithm to achieve RDP using only discrete privacy noise

3. A unified algorithmic framework for achieving optimal regret under central, local, distributed model

4. Extensive simulations and experiments to validate our theoretical results
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Key: ensure that the output of the third party is DP 
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Untrusted
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This alone does not provide formal privacy

y1, y2, …, yn ̂y = (
n

∑
i=1

yi) mod m

x1

xi

xn

y1 = R(x1)

Each local randomizer adds privacy noise on reward

Due to SecAgg: (i) only discrete privacy noise (ii) modular clipping

Given output from SecAgg, , try to calculate ̂y z = A( ̂y) ≈
n

∑
i=1

xi
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😈
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😈
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Untrusted

😈
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Untrusted
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Batch size:  l(b) = 2b+1

Webpage

😀 Ad😀

Webpage

☹ Ad☹
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Ad

Ad

= Current active action Ad

Webpage

☹ Ad☹
xi

Ad
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☹ Ad☹
xn

Ad

yi = R(xi)

yn = R(xn) Local Randomizer  R
[Balle et al’ 20, Cheu & Yan’ 21]

Input , Output  xi ∈ [0,1] yi

xi ̂xi
+ Ber( )⌊xig⌋ xig − ⌊xig⌋

yi
( ̂xi + ηi) mod m

How to choose privacy noise?

̂y = (
n

∑
i=1

yi) mod m

Analyzer A
[Balle et al’ 20, Cheu & Yan’ 21]
Input , Output  ̂y z

If : ; else  ̂y > ng + τ z = ( ̂y − m)/g z = ̂y/g
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Simulate discrete Laplace using Polya noise

 Theorem 1 (Pure-DP via SecAgg)

Local Randomizer  R
[Balle et al’ 20, Cheu & Yan’ 21]

Input , Output  xi ∈ [0,1] yi

̂xi
+ Ber( )⌊xig⌋ xig − ⌊xig⌋

yi
( ̂xi + ηi) mod m

xi

Fix  and . For each batch , the noise , where . 

There exist proper choices of  such that 

ϵ > 0 T b ηi = γ+
i − γ−

i γ+
i , γ−

i ∼i.i.d Poyla(1/n, e−ϵ/g)
g, m, τ

Privacy: pure DP in the distributed model 

Regret: optimal non-private regret +   Θ ( K log T
ϵ )

Communication: bits scales logarithmically with the batch size
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Simulate discrete Laplace using Polya noise

 Theorem 1 (Pure-DP via SecAgg)

Fix  and . For each batch , the noise , where . 

There exist proper choices of  such that 

ϵ > 0 T b ηi = γ+
i − γ−

i γ+
i , γ−

i ∼i.i.d Poyla(1/n, e−ϵ/g)
g, m, τ

Privacy: pure DP in the distributed model 

Regret: optimal non-private regret +   Θ ( K log T
ϵ )

Communication: bits scale logarithmically with the batch size

Remark on privacy

• First result on pure DP in distribute model for MABs


• Also achieve pure DP using advanced shuffle protocol

Remark on regret

• Match the optimal regret under central model


• Only use discrete privacy noise, w/o finite precision approx

Remark on communication

• Only communicate bits


• Previous works scale polynomially
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Skellam noise

 Theorem 2 (RDP via SecAgg)

-RDP(α, ϵ(α))

Fix  and . For each batch , let the noise be  . 


There exist proper choices of  such that 

ϵ > 0 T b ηi ∼ SK (0,
g2

nϵ2 )
g, m, τ

Privacy:  - RDP≈ (α,
αϵ2

2
)

Regret:  optimal non-private regret +   ≈ Θ (
K log T

ϵ )
Communication: scales logarithmically with the batch size

For any two neighboring datasets D and D’, and any 

outcome , E Dα(M(D), M(D′ )) ≤ ϵ(α)
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Skellam noise

 Theorem 2 (RDP via SecAgg)
Fix  and . For each batch , let the noise be  . 


There exist proper choices of  such that 

ϵ > 0 T b ηi ∼ SK (0,
g2

nϵ2 )
g, m, τ

Privacy:  - RDP≈ (α,
αϵ2

2
)

Regret:  optimal non-private regret +   ≈ Θ (
K log T

ϵ )
Communication: scales logarithmically with the batch size

Proposition (Tail bound of Skellam noise)

Skellam random variable has a sub-exponential tail
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Skellam noise

 Theorem 2 (RDP via SecAgg)
Fix  and . For each batch , let the noise be  . 


There exist proper choices of  such that 

ϵ > 0 T b ηi ∼ SK (0,
g2

nϵ2 )
g, m, τ

Privacy:  - RDP≈ (α,
αϵ2

2
)

Regret:  optimal non-private regret +   ≈ Θ (
K log T

ϵ )
Communication: scales logarithmically with the batch size

Remark 1 (Conversion to approximate DP)

• After conversion, it is  tighter than SOTAlog T

Remark 2 (Tight privacy accounting)

• Useful for analyzing returning users

Remark 3 (RDP in other models)
• Our algorithm can be adapted to central and local


• Hence, the first result of RDP guarantees
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Thank you!


