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Sequential Decision Making

Black-box optimization

J(x)

Observation: y, = f(x,) + 7, Expensive evaluation!

T
Minimize R(T) = )’ f(x*) — f(x)
=1



General Algorithm Design
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General Algorithm Design

— [
f, ~ GP(u,, k,) ’



Constrained Kernelized Bandits (CKB)

J(x)

Previous work with theoretical guarantees
* [SGBK’'15, SBY’18, AAT’'20]
« Hard constraints: each X, satisfies constraint w.h.p

* Hence, additional computation is required

* Moreover, only GP-UCB is considered
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Constrained Kernelized Bandits (CKB)

Constraint: g(x) < 0

J(x)
g(x)

Previous work with theoretical guarantees
* [SGBK’'15, SBY’18, AAT’'20]
« Hard constraints: each Xx; satisfies constraint w.h.p

* Hence, additional computation is required

* Moreover, only GP-UCB is considered

Motivations
* Practical soft constraints (e.g., energy)
* Maintain the same computation as before

* Other exploration strategy, e.g., GP-TS
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Constrained Kernelized Bandits (CKB)

Soft Constraints
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Minimize R(T) = 2 Fx®) = f(x,)
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Constrained Kernelized Bandits (CKB)

Soft Constraints

Can a finer complexity-regret-constraint trade-off be attained in CKB under general explorations?
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Main Results

T

J(x)

g(x)

Minimize

T
R(T) = ) flx*) - flx)
=

T
V(T) = ) g(x)
=

x* X

Propose a generic CKB algorithm based on primal-dual optimization with 0(;/Tﬁ ) regret and zero constraint violation

This algorithm is compatible with GP-UCB, GP-TS, RandGP-UCB, and many more...

An extensive evaluations on both synthetic and real-world data

The first detailed discussion on two common techniques for constrained bandits
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General Algorithm Design
Our CKB algorithm
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Online collected data up to time ¢

GP(u,, k(x,x")) for f '
GP(ji,, k(x,x)) for g
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Dual variable Primal update Dual update



General Algorithm Design
Our CKB algorithm

Online collected data up to time ¢

Any
conditions?



A Generic Performance Bound

Many strategies satisfy our sufficient condition (let 7 = £, g)
GP-UCB: /i, = u, + p,0,

GP-TS: i, ~ GP(u,, k,)
RandGP-UCB: i, = u,+ Zo,Z, ~ NV (0,,5,2 )

Theorem

Suppose f, and g, satisfy the sufficient condition, then we have

R(T) =0 <yTﬁ> V(T) = 0, for a sufficient large T

Maximum information gain
Linear kernel: O(d InT) For small T, we also have V(T') = O <}/Tﬁ )

SE kernel: O((In T)*+1)




Evaluations

Regret / constraint violation performance
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Evaluations - Heavy-tailed

Regret / constraint violation performance We plot the stronger metric-

V.(T) = Z max(0,g(x,))
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Conclusion

T

J(x)

g(x)

Minimize

T
R(T) = ) flx*) - flx)
=

T
V(T) = ) g(x)
=

x* X

Propose a generic CKB algorithm based on primal-dual optimization with 0(;/Tﬁ ) regret and zero constraint violation

This algorithm is compatible with GP-UCB, GP-TS, RandGP-UCB, and many more...

An extensive evaluations on both synthetic and real-world data

The first detailed discussion on two common techniques for constrained bandits
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Thank you!



