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Minimize R(T) =
T

∑
t=1

f(x*) − f(xt)
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Gaussian Process 
Surrogate Model
GP(μt, kt(x, x′ ))

GP-UCB 
ft = μt + βtσt

GP-TS 
ft ∼ GP(μt, kt)

xt = arg max ft(x)



11

Constraint: g(x) ≤ 0
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Previous work with theoretical guarantees  

• [SGBK’15, SBY’18, AAT’20] 


• Hard constraints: each  satisfies constraint w.h.p


• Hence, additional computation is required 


• Moreover, only GP-UCB is considered

xt

Constrained Kernelized Bandits (CKB)
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• [SGBK’15, SBY’18, AAT’20] 


• Hard constraints: each  satisfies constraint w.h.p


• Hence, additional computation is required 


• Moreover, only GP-UCB is considered

xt

Motivations  

• Practical soft constraints (e.g., energy)


• Maintain the same computation as before 


• Other exploration strategy, e.g., GP-TS

Constrained Kernelized Bandits (CKB)
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Can a finer complexity-regret-constraint trade-off be attained in CKB under general explorations?
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R(T) =
T

∑
t=1

f(x*) − f(xt)

V(T) =
T
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1. Propose a generic CKB algorithm based on primal-dual optimization with  regret and zero constraint violation        


2. This algorithm is compatible with GP-UCB, GP-TS, RandGP-UCB, and many more…


3. An extensive evaluations on both synthetic and real-world data


4. The first detailed discussion on two common techniques for constrained bandits

Õ(γT T )
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A Generic Performance Bound

Theorem

Suppose  and  satisfy the sufficient condition, then we have ft gt

R(T ) = Õ (γT T) V(T ) = 0, for a sufficient large T

Maximum information gain

Linear kernel:  
SE kernel: 

O(d ln T )
O((ln T )d+1)

For small , we also have  T V(T ) = Õ (γT T)

Many strategies satisfy our sufficient condition (let )

GP-UCB:  
GP-TS:  
RandGP-UCB: 

h = f, g
ht = μt + βtσt

ht ∼ GP(μt, kt)
ht = μt + Ztσt, Zt ∼ 𝒩(0,β2

t )



Evaluations
Regret / constraint violation performance

synthetic data real-world data

All CKB algorithm only violate at most 5 times
CKB-UCB violates 0 times 

CKB-Rand violations 38 times



Evaluations - Heavy-tailed 
Regret / constraint violation performance

Heavy-tailed financial data (Regret)  Heavy-tailed financial data (Constraint)

We plot the stronger metric:

V+(T ) = ∑

t

max(0,g(xt))
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Thank you!


