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In this paper, we establish a unified analytical framework for designing load balancing algorithms that can

simultaneously achieve low latency, low complexity, and low communication overhead. We first propose

a general class Π of load balancing policies and prove that they are throughput optimal and heavy-traffic

delay optimal. This class Π includes popular policies such as join-shortest-queue (JSQ) and power-of-d as

special cases, but not the recently proposed join-idle-queue (JIQ) policy. In fact, we show that JIQ is not

heavy-traffic delay optimal even for homogeneous servers. By exploiting the flexibility offered by the class

Π, we design a new load balancing policy called join-below-threshold (JBT-d), in which the arrival jobs are

preferably assigned to queues that are no greater than a threshold, and the threshold is updated infrequently.

JBT-d has several benefits: (i) JBT-d belongs to the class Π and hence is throughput optimal and heavy-traffic

delay optimal. (ii) JBT-d has zero dispatching delay, like JIQ and other pull-based policies, and low message

overhead due to infrequent threshold update. (iii) Extensive simulations show that JBT-d has excellent delay

performance, comparable to the JSQ policy in various system settings.
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1 INTRODUCTION
Load balancing, which is responsible for dispatching jobs on parallel servers, is a key component in

computer networks and distributed computing systems. For a large number of practical applications,
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such as, Web service [6], distributed caching systems (e.g., Memcached [13]), large data stores

(e.g., HBase [5]), embarrassingly parallel computations [1] and grid computing [4], the system

performance critically depends on the load balancing algorithm it employs.

In a load balancing system, there are two directions of message flows: push messages (from the

dispatcher to the servers) and pull messages (from the servers to the dispatcher). In a push-based

policy, the dispatcher actively sends query messages to the servers and waits for their responses;

In a pull-based policy, the dispatcher passively listens to the report from the servers. The job

dispatching decision is conducted at the dispatcher based on the pull-messages sent from the

servers. Push-based policies (e.g., the join-shortest-queue (JSQ) policy [19], [2] and the power-of-d
policy [10], [17]) have been shown to be delay optimal in the heavy-traffic regime [2], [9]. Recently,

the pulled-based policies such as join-idle-queue (JIQ) [8] and the equivalent one in [15], have

been proposed. Compared with the push-based policies, these pull-based policies not only achieve

good delay performance, but also have some nice features, such as, lower message overhead, lower

computational complexity, and zero dispatching delay. However, as shown in the simulations of [8],

the delay performance of existing pull-based polices will degrade substantially as the load gets

higher. In fact, as shown in Theorem 3.11 of this paper, JIQ is not heavy-traffic delay optimal even

for homogeneous servers. Therefore, one key question is how to design load balancing policies that

are heavy-traffic delay optimal and meanwhile possess all the nice features of pull-based policies

such as zero dispatching delay, low message overhead and low computational complexity.

In this paper, we take a systematic approach to address this question. To that end, the main

contributions of this paper are summarized as follows:

• We derive inner-product based sufficient conditions for proving that a load-balancing policy

is throughput optimal and heavy-traffic delay optimal. Using these sufficient conditions, we

obtain a general class Π of load balancing policies that are throughput optimal and heavy-

traffic delay optimal. This class of load balancing policies contains the famous (push-based)

JSQ and the power-of-d policies as special cases, but not the (pull-based) JIQ policy.

• On the other hand, we show that JIQ, which is not in Π, is not heavy-traffic delay optimal

even for homogeneous servers. While it has been empirically shown in the past that the

delay using JIQ is quite bad at high loads, the question of whether it was heavy-traffic delay

optimal in homogeneous servers has been previously left unsolved. Furthermore, our novel

Lyapunov-drift approach offers a new avenue to show a policy is not heavy-traffic delay

optimal.

• By exploiting the significant flexibility offered by class Π, we are able to design a new policy

called Join-Below-Threshold (JBT-d). To the best of our knowledge, this is the first load

balancing policy that guarantees heavy-traffic delay optimality while enjoying nice features

of pull-based policy, e.g., zero dispatching delay, lowmessage overhead and low computational

complexity. Through extensive simulations, we demonstrate that JBT-d has excellent delay

performance for different system sizes and various arrival and service processes over a large

range of traffic loads.

The rest of the paper is organized as follows. Section 1.1 reviews the related work on load

balancing schemes. Section 1.2 introduces the necessary notations in the paper. Section 2 describes

the system model and the related definitions. Section 3 presents the main results of the paper.

In particular, a class Π of flexible load balancing policies are introduced, containing as special

cases the popular existing ones and motivating new ones. Sufficient conditions are derived to

guarantee throughput and heavy-traffic delay optimality. Section 4 contains the simulation results

on comparing different policies, demonstrating the performance and simplicity of our new policy.

Section 5 contains the proofs of the main results.
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1.1 Related work: push versus pull
This section reviews state-of-the-art load balancing policies with a focus on the system performance

in heavy traffic. We group these policies mainly into two categories: push-based and pull-based as

shown in Fig. 1.

Push-based policy: Under a push-based policy, the dispatcher tries to “push” jobs to servers.

More specifically, upon each job arrival, the dispatcher sends probing messages to the servers, which

feed back the required information for dispatching decisions, e.g., queue lengths. After receiving

the feedback, the dispatcher sends the incoming jobs to servers based on a dispatching distribution.

A classical example in this category is the JSQ policy, under which the dispatcher queries the queue

length information of each server upon new job arrivals, and sends the incoming jobs to the server

with the shortest queue, with ties broken randomly. It has been shown [19] that for homogeneous

servers this policy is delay optimal in a stochastic ordering sense under the assumption of renewal

arrival and non-decreasing failure rate service. In the heavy-traffic regime, it has been proved that

it is heavy-traffic delay optimal for both heterogeneous and homogeneous servers [2]. Nevertheless,

the performance of this policy comes at the cost of substantial overhead as it has to sample the

queue lengths of all the servers, which is undesirable in large-scale systems. To overcome this

problem, an alternative load balancing policy called power-of-d has been introduced [10], [17];

see also related works [20], [16]. Under this policy, the dispatcher routes all the incoming jobs

to the server that has the shortest queue length, with ties broken randomly, out of the d servers

sampled uniformly at random. This policy has also been shown to be heavy-traffic optimal for

homogeneous servers [9]. However, for heterogeneous servers, the power-of-d policy is neither

throughput optimal, nor delay optimal in heavy traffic.

Pull-based policy: Under a pull-based policy, the servers spontaneously send messages to “pull”

jobs from the dispatcher according to a fixed policy. One illustrative example is the JIQ policy [8]

and the equivalent one in [15]. Under the JIQ policy, each server sends a pull message to the

dispatcher whenever it becomes idle. Upon job arrivals, the dispatcher checks the available pull

messages in memory. If such messages exist, it removes one uniformly at random, and sends the

jobs to the corresponding server. Otherwise, the new jobs will be dispatched uniformly at random

to one of the servers in the system. This policy has several favorable properties. The most important

property is that the required number of messages in steady-state is at most one for each job arrival,

which is smaller than the 2d of the power-of-d-choices (d for query and d for response per job).

However, as already shown in [8], when the load becomes heavy, the performance of JIQ keeps

empirically degrades substantially, and in fact, in Theorem 3.11 we show that it is not heavy traffic

delay optimal even for homogeneous servers.

1.2 Notations
We use boldface letters to denote vectors in RN and ordinary letters for scalers. Denote by Q
the random vector whose probability distribution is the same as the steady-state distribution of

{Q(t ), t ≥ 0}. The dot product in RN is denoted by ⟨x, y⟩ :=
∑N

i=1 xiyi . For any x ∈ RN , the l1
norm is denoted by ∥x∥

1
:=

∑N
n=1 |xn | and l2 norm is denoted by ∥x∥ :=

√
⟨x, x⟩. The parallel and

perpendicular component of the queue length vector Q with respect to a vector c with unit norm is

denoted by Q∥ := ⟨c,Q⟩c and Q⊥ := Q − Q∥ , respectively.

2 MODEL AND DEFINITIONS
This section describes a general model for the load balance systems as shown in Fig. 1, and introduces

necessary definitions.
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Fig. 1. System model of general load balancing. (a) For push-based policy, we havem(t ) = ∅ for all t since
it does not require any memory. The message exchange is bidirectional: probing from the dispatcher and

feedback messages from servers. (b) For pull-based policy,m(t ) stores the ID of the servers that satisfy a

certain condition at time t . The message exchange is unidirectional, i.e., there only exists the pull-message

that is sent from the servers to the dispatcher.

2.1 Model Description
Consider a time-slotted load balancing system, with one central dispatcher and N parallel servers.

These servers are indexed by its ID n = 1, 2, . . . ,N . Each server n is associated with a FIFO (first-in,

first-out) queue of length Qn (t ) at the beginning of time slot t , t = 0, 1, 2, . . .. Thus, we use index n
to represent both the server and the associated queue. Once a job joins a queue, it will remain in

that queue until its service is completed.

Assumption 1 (Arrival Process). Let AΣ (t ) and An (t ) denote the number of exogenous job arrivals

and the number of arrivals routed to queue n at time slot t , respectively. We assume that all the

exogenous arrivals at time t are routed to one selected queue s , using the standard model as in

[2], [9], i.e., As (t ) = AΣ (t ), s ∈ N = {1, 2, . . . ,N } and Ai (t ) = 0, for all i ∈ N \ {s}. The job arrival
process {AΣ (t ), t ≥ 0} is a nonnegative integer valued stochastic process that is i.i.d across time t ,
with mean E [AΣ (t )] = λΣ and variance Var(AΣ (t )) = σ 2

Σ. We further assume that the number of

exogenous arrivals at each time slot is bounded by a constant, i.e., AΣ (t ) ≤ Amax < ∞ for all t ≥ 0.

Assumption 2 (Service Process). Let Sn (t ) denote the potential service offered to queue n at time

t , which represents the maximum number of jobs that can be served in time slot t . Therefore,
if the offered service Sn (t ) is larger than the number of pending jobs in queue n at time slot t ,
it will cause an unused service Un (t ), as defined in (1). For each n, the process {Sn (t ), t ≥ 0}

is a nonnegative integer valued i.i.d. stochastic process with mean E [Sn (t )] = µn and variance

Var(Sn (t )) = ν2n . Moreover, λΣ <
∑N

i=1 µn . Furthermore, the processes {Sn (t ), t ≥ 0},n ∈ N are

mutually independent across different queues, which are also independent of the arrival processes.

The offered service Sn (t ) to each queue is uniformly bounded by a constant, i.e., Sn (t ) ≤ Smax < ∞
for all t ≥ 0 and all n ∈ N .

Let Q(t ) = {Q1 (t ), . . . ,QN (t )} be the queue lengths observed at the beginning of time t . Define
m(t ) to be the set of server IDs stored in the dispatcher at the beginning of time slot t . In general,

the dispatcher makes the decision of An (t ) based on (Q(t ),m(t )) for each time slot t . This includes
the cases that the dispatching decision depends only on Q(t ) (e.g., JSQ), partial information of

Q(t ) (e.g., power-of-d) or only onm(t ) (e.g., JIQ). In each time slot, the queueing dynamics evolves

according to the following procedure. The job arrivals occur at the beginning of time slot t . Then, the
dispatching decision An (t ) is selected based on (Q(t ),m(t )). Further, the routed jobs are processed

by the allocated servers. Thus, the queueing dynamics is given by the following equation,
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Qn (t + 1) = [Qn (t ) +An (t ) − Sn (t )]

= Qn (t ) +An (t ) − Sn (t ) +Un (t ),
(1)

where [x]+ = max(0,x ),Un (t ) = max(Sn (t )−Qn (t )−An (t ), 0) denotes the unused service of queue
n.

2.2 Definitions
The load balancing system is modeled as a discrete-time Markov chain {Z (t ) = (Q(t ),m(t )), t ≥
0} with state space Z, using queue length vector Q(t ) together with the memory state m(t ).
We consider a system {Z (ϵ ) (t ), t ≥ 0} parameterized by ϵ , i.e., the exogenous arrival process is

{A(ϵ )
Σ (t ), t ≥ 0} with λ(ϵ )Σ = µΣ − ϵ =

∑
n µn − ϵ . That is, we use ϵ to indicate the distance of arrival

rate to the capacity boundary, and it is also adopted as a superscript to represent the corresponding

random variables and processes.

Definition 2.1 (Stability). {Z (ϵ ) (t ), t ≥ 0} is said to be stable if we have

lim sup

C→∞
lim sup

t→∞
P *
,

∑
n

Q (ϵ )
n (t ) > C+

-
= 0.

A load balancing policy is said to be throughput optimal if it stabilizes the system under any

arrival rate in the capacity region. Since the capacity region in our model is simply λΣ < µΣ, the
definition of throughput optimality is given as follows.

Definition 2.2 (Throughput Optimality). A load balancing policy is said to be throughput optimal

if it stabilizes {Z (ϵ ) (t ), t ≥ 0} for any ϵ > 0.

For the definition of heavy-traffic delay optimality, we need the following definition and property.

Definition 2.3 (Resource-pooled System). A single-server FCFS (first-come, first-serve) system

{q (ϵ ) (t ), t ≥ 0} is said to be the resource-pooled system with respect to {Z (ϵ ) (t ), t ≥ 0}, if its arrival

and service process satisfy a (ϵ ) (t ) = A(ϵ )
Σ (t ) and s (t ) =

∑
Sn (t ) for all t ≥ 0. Then, we have

E
[
q (ϵ ) (t )

]
≤ E

[∑
Q (ϵ )
n (t )

]
, (2)

for all t ≥ 0 and ϵ > 0.

In words, a resource-pooled system is a system that merges the total resource of N servers and

queues to a single server with a single queue. Eq. (2) holds due to the fact for any t , the overall
arrivals to the resource-pooled system and to load balancing system are the same, and the overall

service in the resource-pooled system is stochastically larger than the overall service in the load

balancing system. This is due to the fact that the jobs in load balancing system cannot be moved

from one queue to another, which often results in a strict inequality in Eq. (2). However, in the

heavy-traffic regime, this lower bound can be achieved under some policy in an asymptotic sense

as defined in the next definition, and hence based on Little’s law this policy achieves the minimum

average delay of the system.

Definition 2.4 (Heavy-traffic Delay Optimality). A load balancing policy is said to be heavy-traffic

delay optimal if the stationary workload of {Z (ϵ ) (t ), t ≥ 0} under all the arrival and service processes

in Assumptions 1 and 2, satisfies
1

1
Assume (σ (ϵ )

Σ )2 converges to a constant.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 39. Publication date: December 2017.



39:6 X. Zhou et al.

lim

ϵ ↓0
ϵE



∑
n

Q
(ϵ )
n


= lim

ϵ ↓0
ϵE

[
q (ϵ )

]
, (3)

where Q is the random vector whose probability distribution is the same as the steady-state

distribution of {Q(t ), t ≥ 0}.

Remark 1. Based on the definition above, in order to show a policy, say P1, is not heavy-traffic

delay optimal, it is sufficient to find a class of {A(ϵ )
Σ (t )} and {Sn (t )} such that Eq. (3) does not hold.

In other words, there exists a class of arrival and service processes for which policy P1 cannot

achieve the lower bound (i.e., the resource-pooled system) while JSQ can (since it is heavy-traffic

delay optimal).

3 MAIN RESULTS
In this section, we introduce a class Π of load balancing policies which are proven to be delay-

optimal in the heavy-traffic regime. Popular load balancing policies, such as JSQ and power-of-d ,
are special cases in Π; but the JIQ policy does not belong to Π as we will show in Theorem 3.11

that it is not heavy-traffic delay optimal. In order to improve the delay performance of JIQ while

maintaining its low message overhead and simplicity, we develop a new load balancing policy

named join-below-threshold (JBT-d), which is heavy-traffic delay-optimal as we can show JBT-d is

in Π and has a low message overhead similar to JIQ.

3.1 The Class of Load Balancing Policies Π
Let us denote p(t ) = (p1 (t ), . . . ,pN (t )), where pn (t ) is the probability that the new arrivals in time

slot t are dispatched to queue n such that

∑N
n=1 pn (t ) = 1. We consider a class of load balancing

policies in which p(t ) is a function of the system state Z (t ) = {Q(t ),m(t )}. Consider a permutation

σt (·) of (1, 2, . . . ,N ) that satisfiesQσt (1) (t ) ≤ Qσt (2) (t ) ≤ . . . ≤ Qσt (N ) (t ) for all t , i.e., the queues are
sorted according to an increasing order of the queue lengths in time slot t with ties broken randomly.

Define P(t ) = (P1 (t ), . . . , PN (t )) such that P(t ) is a permutation of p(t ) with Pn (t ) = pσt (n) (t ). Let

∆n (t ) = pσt (n) (t ) − µσt (n)/µΣ

= Pn (t ) − µσt (n)/µΣ. (4)

Definition 3.1 (Equivalence in inner-product). A dispatching distribution P̂(t ) is said to be equiva-
lent to another dispatching distribution P(t ) in inner product, if∑

n

Qσt (n)∆n (t ) =
∑
n

Qσt (n)∆̂n (t ), (5)

or equivalently, if ∑
n

Qσt (n)Pn (t ) =
∑
n

Qσt (n)P̂n (t ). (6)

The equivalence between (5) and (6) follows immediately from (4). Intuitively speaking, a load-

balancing policy is ‘good’ if the inner product between Qσt (t ) and P(t ) is as small as possible such

that more packets are dispatched to shorter queues. If P(t ) is equivalent to P̂(t ) in inner-product,

we can replace P̂(t ) by P(t ) without affecting the property of the policy in heavy-traffic regime,

which will be explained in details later.

The following definitions enable us to distinguish different load balancing policies based on P(t )
or equivalently ∆(t ):
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Fig. 2. Illustrations of tilted distribution, δ -tilted distribution, and equivalence in inner-product.

Definition 3.2 (Tilted distribution). A dispatching distribution P(t ) is said to be tilted, if there
exists k ∈ {2, . . . ,N } such that ∆n (t ) ≥ 0 for all n < k and ∆n (t ) ≤ 0 for all n ≥ k .

Definition 3.3 (δ -tilted distribution). A dispatching distribution P(t ) is said to be δ -tilted, if (i)
P(t ) is tilted and (ii) these exists a constant δ > 0 such that ∆1 (t ) ≥ δ and ∆N (t ) ≤ −δ .

Some examples are presented in Fig. 2 to facilitate the understanding of tilted distribution, δ -tilted
distribution, and equivalence in inner-product. Fig. 2 (a)-(f) illustrate six dispatching distributions

P(t ). The queue state Q(t ) is given by (i) or (ii). The service rates are µA = µB = µC = µD = 1 such

that µi/µΣ = 1/4 for i = A,B,C,D. By direct computation, one can obtain that Pn (t ) is tilted in

scenario (a), (b), (d), (e), and (f), and is δ -tilted in scenario (d), (e), and (f). If Q(t ) is in the State (i),

there is no tie in the queue length and hence the permutation σt (·) is unique, which means that

P(t ) is fully determined by p(t ). If Q(t ) is in the State (ii), all queue lengths are equal and hence

the permutation σt (·) is non-unique, which means that P(t ) is determined by both p(t ) and σt (·).
In this case, however, the inner product between Qσt (t ) and P(t ) is 1 in all (a)-(f), and hence the

dispatching distributions P(t ) in (a)-(f) are mutually equivalent in inner product. For example, in

this case even though P(t ) in (c) is neither tilted nor δ -tilted, it is equivalent in inner product to

P(t ) in (d) which is both tilted and δ -tilted.
From the perspective of heavy-traffic delay performance, tilted distribution is a dispatching

distribution that is not worse than random routing and δ -tilted distribution is a dispatching

distribution that is strictly better than random routing. In addition, the equivalence in inner-

product allows us to transfer a tilted dispatching distribution to a δ -tilted dispatching distribution

when there are ties in queue lengths, that is, it allows to merges probability in P(t ) from longer

queues to shorter queues without changing the inner product.

We now introduce a class of load balancing algorithms Π based on the property of P(t ) or its
equivalent distributions in inner product.
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Definition 3.4. A load balancing policy is said to belong to class Π if it satisfies the following two

conditions:

(i) P(t ) or one of its equivalent distributions in inner product is tilted for all Z (t ) and t ≥ 0.

(ii) For some finite positive constants T and δ that both are independent of ϵ , there exists a time

slot tk ∈ {kT ,kT + 1, . . . , (k + 1)T − 1} for each k ∈ N such that P(tk ) or one of its equivalent
distributions in inner product is δ -tilted for all Z (tk ).

In the sequel, we will show that any policy in Π satisfies the following two sufficient conditions

for throughput and heavy-traffic delay optimality, which are obtained via the Lyapunov-drift based

approach developed in [2].

Lemma 3.5. If there exist T1 > 0, K1 ≥ 0, and γ > 0 such that for all t0 = 1, 2, . . ., all Z ∈ Z and
λΣ < µΣ

E


t0+T1−1∑
t=t0

⟨Q(t ),A(t ) − S(t )⟩ | Z (t0) = Z

≤ −γ 

Q

 + K1, (7)

then the system is throughput-optimal. Moreover, the stationary distribution of the queueing system
has bounded moments, i.e., there exist finiteMr such that for all ϵ > 0 and r ∈ N

E
[



Q

(ϵ )




r ]
≤ Mr .

Proof. See Appendix A. □

Lemma 3.6. Under the assumptions of Lemma 3.5, if there further exist T2 > 0, K2 ≥ 0 and η > 0

that are independent of ϵ , such that for all t0 = 1, 2, . . . and all Z ∈ Z

E


t0+T2−1∑
t=t0

⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z

≤ −η 

Q⊥

 + K2 (8)

holds for all ϵ ∈ (0, ϵ0), ϵ0 > 0, where Q⊥ = Q − ⟨Q, c⟩c is the perpendicular component of Q with
respect to the line c = 1√

N
(1, 1, . . . , 1), then the system is heavy-traffic delay optimal, i.e.,

lim

ϵ ↓0
ϵE



∑
n

Q
(ϵ )
n


= lim

ϵ ↓0
ϵE

[
q (ϵ )

]
.

Proof. See Appendix B. □

Remark 2. Note that these two sufficient conditions distilled from the Lyapunov-drift based

approach not only provide a unified approach for throughput and heavy-traffic optimality analysis,

but also enable us to abstract a class of heavy-traffic delay optimal policies. In particular, using

Lemma 3.5 and Lemma 3.6, we are able to prove the main result of this paper.

Theorem 3.7. Any load balancing policy in Π is throughput optimal and heavy-traffic delay
optimal.

Proof sketch of Theorem 3.7. The insight for a policy in Π to satisfy the sufficient condition

in Eq. (7) is that under tilted dispatching distribution the performance is no worse than random

dispatching. This follows from the following property of tilted distribution

N∑
n=1

Qσt (n) (t )∆n (t ) ≤ 0. (9)
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The equality is obtained when all ∆n (t ) is zero, which is the case of random dispatching as shown

in (b) of Fig. 2. Note that for all other cases of a tilted distribution, Eq. (9) is strictly less than zero.

This is true since

∑N
n=1 ∆n (t ) is always zero and the permutation is in the non-decreasing order of

the queue length.

The intuition for a policy in Π to satisfy the sufficient condition in Eq. (8) is that the performance

under any δ -tilted dispatching distribution is strictly better than random dispatching, under which

the term in Eq. (8) is 0 for homogeneous servers and of order ϵ for heterogeneous servers. Note
that under a δ -tilted distribution, we have

N∑
n=1

Qσt (n) (t )∆n (t ) ≤ −δ (Qσt (N ) (t ) −Qσt (1) (t ). (10)

This inequality comes from the definition of the δ -tilted distribution and fact that the permutation

is in the non-decreasing order of the queue length. In order to have the term of


Q⊥

, the following

inequality would be quite useful



Q⊥ (t )

 ≤
√
N (Qσt (N ) (t ) −Qσt (1) (t )). (11)

This is true since Q⊥ (t ) = Q(t ) − Q∥ (t ) = Q(t ) −
∑
Qn (t )
N 1 = Q(t ) −Qavg (t )1, in which Qavg (t ) is

the average queue length among the N servers at time slot t .
The details of the proof are presented in Section 5.1. □

From Eqs. (9) and (10), it can be seen that the important property of a given policy is fully

characterized by the inner product of Qσt (t ) and ∆(t ) under the system state Z (t ), which is

actually the motivation to define equivalent distribution in inner product. That is, even though

the dispatching distribution P(t ) is not unique when there are ties in queue lengths, the inner

product is actually the same if two dispatching distributions are equivalent in inner product, hence

preserving the same property in heavy-traffic regime.

Note that class Π is sufficient but not necessary for heavy-traffic delay optimality. Nevertheless,

in the next section, we will show that it not only contains many well-known heavy-traffic delay

optimal policies but also allows us to design new heavy-traffic delay optimal policies which enjoy

nice features of pull-based policies.

3.2 Important Policies in Π

3.2.1 Join-shortest-queue (JSQ) policy. Under JSQ policy, all the incoming jobs are dispatched to

the queue that has the shortest queue length, ties are broken uniformly at random, out of all the

servers.

Proposition 3.8. The JSQ policy belongs to Π, and hence is throughput optimal and heavy-traffic
delay optimal.

The result that JSQ is throughput and heavy traffic delay optimal has been first proven via

diffusion limits for two servers in [3] and via Lyapunov-drift argument for N servers in [2]. Here,

we present another simple proof based on our main result.

Proof. Note that when there are no ties in queue lengths, the dispatching distribution P(t )
under JSQ satisfies that for all t

P1 (t ) = 1 and Pn (t ) = 0, 2 ≤ n ≤ N . (12)

In other words, all the arrivals are dispatched to the shortest queue, which is always the queue

σt (1) if there are no ties in queue lengths. If there are ties in queue lengths, this P(t ) is equivalent in
inner product to other dispatching distribution under the state Z (t ) in which ties exist. In particular,
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if there arem ≤ N queues that all have the shortest queue length, then in this case by random

routing the dispatching distribution under JSQ is given by P̂i =
1

m for all 1 ≤ i ≤ m, and P̂i = 0

for all i > m. It can be seen that P(t ) in Eq. (12) is equivalent in inner product to P̂(t ) according to

the definition because Qσt (1) = Qσt (2) = . . . = Qσt (m) . Thus, for all Z (t ), under JSQ the dispatching

distribution or its equivalent distribution in inner product is in the form of Eq. (12). Hence, we have

∆1 (t ) = 1 − µσt (1)/µΣ > 0, and ∆n (t ) = −µσt (n)/µΣ < 0 for all 2 ≤ n ≤ N , which implies that P(t )
is a δ -tilted distribution with δ = µmin/µΣ for all Z (t ), t ≥ 0, where µmin = minn∈N µn . Therefore,
the JSQ policy is contained in the class Π under both heterogeneous and homogeneous servers. □

3.2.2 The power-of-d policy. Under the power-of-d policy, all the incoming jobs are dispatched

to the queue that has the shortest queue length, ties are broken uniformly at random, out of d ≥ 2

servers, which are chosen uniformly at random.

Proposition 3.9. The power-of-d policy belongs to Π under homogeneous servers, and hence is
throughput-optimal and heavy-traffic delay optimal.

The power-of-d policy has been proven to be heavy-traffic delay optimal via Lyapunov drift

condition in [9]. Here, we will present another proof based on our main result.

Proof. Note that when there are no ties in queue lengths, the dispatching distribution P(t )
under the power-of-d policy satisfies that for all t ≥ 0

Pn (t ) =

(
N − n

d − 1

) / (
N

d

)
, 1 ≤ n ≤ N − d + 1, (13)

and Pn (t ) = 0, for all n > N − d + 1. This comes from the fact that all arrivals are dispatched to

the queue with shortest queue length among d uniformly randomly sampled servers. Thus, if the

queue σt (n) is the one with shortest queue length among d samples, the remaining d − 1 samples

must come from queues σt (n + 1), σt (n + 2), . . . σt (N ) if all the queue lengths are different in Z (t ).
If there are ties in queue lengths, it can be easily shown that this P(t ) is equivalent in inner product

to other dispatching distributions under any given Z (t ) in which there are ties in queue lengths.

Thus, for all Z (t ), the dispatching distribution or its equivalent distribution in inner product under

the power-of-d policy can be fully determined by Eq. (13). Since Pn (t ) is decreasing and µσt (n) = µ

under homogeneous servers, P(t ) is a tilted distribution. Note that ∆1 (t ) =
d−1
N and ∆N (t ) = − 1

N .

As a result, P(t ) is a δ -tilted distribution with δ = 1

N for all Z (t ), which implies that power-of-d
policy is included in the class Π for homogeneous servers. □

3.2.3 Join-idle-queue policy is not in Π. Now we will show that the JIQ policy is not contained

in the class Π because it is in fact not heavy-traffic delay optimal in homogeneous servers. For the

heterogeneous case, it is well-known that JIQ is not heavy-traffic delay optimal since it is not even

throughput optimal for a fixed number of servers [15]. However, for the homogeneous case, it is still

open whether it is heavy-traffic optimal for a fixed number of servers, although it has been shown

to be heavy-traffic optimal when the number of servers goes to infinity in the Halfin-Whitt regime

[12]. It turns out that when the number of servers is fixed, there exists a class of arrival process,

under which the delay performance of JSQ is strictly better than that of JIQ in the heavy-traffic

limit. More specifically, as shown in the proof of Theorem 3.11, for a class of arrival process, the

delay under JIQ cannot achieve the common lower bound (i.e., the resource-pooled system), while

JSQ can, which implies that JIQ is not heavy-traffic delay optimal for homogeneous case.

In particular, we consider the two-server case with constant service process with rate 1. We are

able to find a class of arrival process such that Eq. (3) under JIQ does not hold. Let us first introduce

the class of arrival process A.
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Table 1. Summary of load balancing policies

Policy Message

Throughput-Optimal Heavy-traffic Delay-Optimal

Homogeneous Heterogeneous Homogeneous Heterogeneous

Random 0

√
× × ×

JSQ [2] 2N
√ √ √ √

Power-of-d [9], [10] 2d
√

×
√

×

JIQ[15], [8] ≤ 1

√
× × ×

JBT-d ≤ N+2d
T + 1

√
×

√
×

JBTG-d ≤ N+2d
T + 1

√ √ √ √

*
The message rate for JBT-d and JBTG-d in this table is just a crude upper bound. When the new threshold is larger

than the old one, there is no need for the servers that are already recorded in memory to resend pull-messages.

Definition 3.10. An arrival process AΣ (t ) is said to belong to A if

(i) P(A(ϵ )
Σ (t ) = 0) = p0, which p0 is a constant independent of ϵ .

(ii) (σ (ϵ )
Σ )2 approaches a constant σ 2

Σ which satisfies that σ 2

Σ > 8/p0 − 4.

More concretely, we are able to show the following result.

Theorem 3.11. JIQ is not heavy-traffic delay optimal in a load balancing system consisting of two
homogeneous servers.

Proof. The proof is relegated to the technical report [21]. □

3.3 Designing New Policies in Π

It has been shown in the last section that the state-of-art push-based policies, e.g., JSQ and power-

of-d , are all included in Π. Recall that, both of them need to sample the queue length information

upon each new arrival, which directly results in the following two problems.

(a) The message exchange rate between dispatcher and servers is high, especially for join-shortest-

queue.

(b) Each arrival has to wait for completion of the message exchange before being dispatched, which

increases the actual response time for each job.

To resolve the problem, the pull-based policies, join-idle-queue (JIQ) in [8] and an equivalent

algorithm called PULL in [15] are proposed, which have been shown to enjoy low message rate (at

most one message per job) and have a better performance than the power-of-d policy from light to

moderate loads. However, as shown via numerical results in [8] and the proof of Theorem 3.11 in

this paper, when the load becomes high, the performance of JIQ is much worse than the power-of-d
policy, which motivates us to design policies that enjoy low message rates, while still guaranteeing

throughput and heavy-traffic delay optimality.

Definition 3.12. Join-below-threshold-d (JBT-d) policy is composed of three components:

(1) A threshold is updated everyT units of time by uniformly at random sampling d servers, and

taking the shortest queue length among the d servers as the new threshold.

(2) Each server sends its ID to the dispatcher when its queue length is not larger than the

threshold for the first time.

(3) Upon a new arrival, the dispatcher checks the available IDs in the memory. If they exist, it

removes one uniformly at random, and sends all the new arrivals to the corresponding server.

Otherwise, all the new arrivals will be dispatched uniformly at random to one of the servers

in the system.
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To be more specific, we explain the connections of the three components as follows. At the

beginning of each time slot, the dispatcher immediately routes the new arrivals to a server only

based on its memory state, i.e., no sampling. If there are available IDs in memory, it removes one

uniformly at random and sends the newly arrived jobs to the corresponding server. Otherwise,

it sends the new jobs to a server selected uniformly at random among all the servers. At the end

of each time slot, if there is no update of threshold, each server will immediately report its ID

if its queue length is not larger than the threshold for the first time, i.e., only reporting once for

each server before dispatched. Otherwise, the dispatcher updates the threshold by uniformly at

random sampling d servers, and the new threshold is set as the shortest queue length among d
samples. Then, each server decides to whether or not to report based on its queue length and the

new threshold, using the same way as before.

Definition 3.13. The JBT-d policy can be easily generalized for heterogeneous servers, denote by

JBTG-d , as follows. The only difference is that the dispatching probability distribution for the case

of non-empty and empty memory is given by

ψi (t ) :=
µi∑

j ∈m (t ) µ j
1{i ∈m (t ) } and ϕi (t ) :=

µi
µΣ

for all i .

That is, the probability to be selected for a server that has its ID in memory is weighted by its

service rate. This can be easily done by requiring the server to report its service rate µn as well as

its ID.

In the following, we will show that JBT-d and JBTG-d belong to Π, and hence throughput and

heavy-traffic delay optimal. More specifically, we have the following result.

Proposition 3.14. For any finite T and d ≥ 1, the following two assertions are true:
(1) JBT-d is in Π for homogeneous servers, and hence throughput and heavy-traffic delay optimal.
(2) JBTG-d is in Π for both homogeneous and heterogeneous servers, and hence throughput and

heavy-traffic delay optimal.

Proof sketch of Proposition 3.14. Let us look at JBT-d for some key insights behind this proof.

In order to show it is in Π, we only need to show that it satisfies the two conditions (i) and (ii).

For the condition (i), we will show that at any time slot t , the dispatching is no worse than the

random routing. For the condition (ii), we will show that at time slots rT + 1, r ∈ {0, 1, 2, . . .}, the
dispatching decision is strictly better than the random routing.

Note that under the JBT-d policy, if the ID of the server σt (n + 1) is inm(t ), we must have that

the ID of the server σt (n) is also inm(t ) as the permutation is in the non-decreasing order of the

queue length. Denote by p̃k (t ) the probability that there are k IDs in the memorym(t ) for time t ,
i.e., p̃k (t ) = Pr( |m(t ) | = k ). Then, the probability for the server σt (n) to be selected at time t , i.e.,
Pn (t ) is given by

Pn (t ) =
N∑
i=n

p̃i (t )
1

i
. (14)

This is true since for the server σt (n) to be selected, there should be at least n IDs in memory, i.e.,

|m(t ) | ≥ n and in each case the probability for the server σt (n) to be chosen is
1

|m (t ) | . Therefore,

we can see that the probability of Pn (t ) satisfies

P1 (t ) ≥ P2 (t ) ≥ . . . ≥ PN (t ), (15)

which directly implies that for all t ≥ 0 there exists a k between 2 and N such that ∆n (t ) =
Pn (t ) −

1

N ≥ 0 for all n < k and ∆n (t ) ≤ 0 for all n ≥ k . Therefore, condition (i) of Π is satisfied.
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For condition (ii), we will show that there exists a lower bound for δ such that P(rT + 1) (or an
inner product equivalent distribution when there are ties in queue lengths), is at least a δ -tilted
distribution for r ∈ {0, 1, 2, . . .}. In this case, we need only to show that PN (rT + 1) is strictly less

than
1

N for all the system state Z (rT + 1).
The full proof is presented in Section 5.2. □

3.4 Features of JBT-d
This section summarizes the main features of JBT-d policy and compares it with existing policies in

Table 1. In particular, we compare the number of messages for each new arrival under different

policies. For push-based polices, e.g., JSQ and power-of-d , there ared query andd response messages

for each new arrival (d = N for JSQ policy). For JIQ policy, for each new arrival, it requires at

most one pull-message since when there are no pull-messages in memory, the arrival is dispatched

randomly without costing any pull-message. Similarly, our JBT-d policy requires 2d push-messages

every T time slots to update the threshold. Due to the threshold update, the old pull-messages may

be discarded, which is upper bounded by N . Hence, the pull-message for each new arrival under

JBT-d is at most 1 + 2d+N
T .

In sum, the JBT-d policy has the following nice features: a) It is throughput and heavy-traffic delay

optimal since it is in Π. b) It is able to guarantee heavy-traffic delay optimal with very low message

overhead when T is relatively large. c) The computation overhead is small since it only needs to

keep a list of the available IDs and choose randomly. d) The arrival is immediately dispatched, i.e.,

there is no dispatching delay as compared to push-based policies such as JSQ and Power-of-d .
It is worth pointing that by just changing the way of updating the threshold in JBT-d, we can

design other new policies which also enjoy the nice features above. For example, it can be easily

shown via similar arguments that if the threshold is updated by sampling all the servers and taking

the average value of the queue length as the new threshold, this corresponding new policy is still

in the class Π.

4 NUMERICAL RESULTS
In this section, we use simulations to compare our proposed policies JBT-d and JBTG-d with

join-shortest-queue (JSQ), join-idle-queue (JIQ), power-of-d (SQ(d)) and power-of-d with memory

(SQ(d ,m)). The power-of-d with memory policy (SQ(d ,m)) improves power-of-d by using extra

memory to store them shortest queues sampled at the previous time slot [11].

We compare the throughput performance, delay performance, heavy-traffic delay performance

and message overhead performance under various arrival and service processes as well as different

system sizes. Moreover, the 95% confidence intervals for all the simulation results can be found

in the technical report [21], which justify the accuracy of the simulation results. The exogenous

arrival AΣ (t ) and potential service Sn (t ) are drawn from a Poisson distribution with rate λΣ and µn
for each time slot unless otherwise specified. The traffic load is equal to ρ = λΣ/µΣ. The parameter

T is the threshold update interval for JBT-d and JBTG-d .
Below we summarize the key observations from the simulations; see Appendix D of the technical

report [21] for the full set of simulation results.

(i) Throughput performance:
(a) Our proposed policy JBT-d stabilizes all the considered loads in heterogeneous systems

under all different settings.

(b) JIQ and SQ(d) cannot stabilize the system when the load is high in all the cases.

(c) JIQ appears to have a larger capacity region as the number of servers increases. This agrees

with the theoretical result in [15].
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(ii) Delay performance:
(a) Our proposed policy JBT-d exhibits good performance across a wide range from light to

heavy traffic in all the cases.

(b) As the system size increases, JBT-d achieves the same performance as JSQ for a larger

range of loads. Meanwhile, the gains of JBT-d over SQ(d) and SQ(d ,m) become larger as

the number of servers increases.

(c) The gain of JBT-d over JIQ decreases as the number of servers increases. This is also

intuitive since as N goes to infinity, it is more likely to find an idle server, which results in

the fact that JIQ is heavy-traffic delay optimal in the Halfin-Whitt regime [12].

(d) The gain of JBT-d over JIQ increases as the arrivals or services become more bursty. This

agrees with the insight in the proof of Theorem 3.11 that larger variance of arrival or

service process will degrade the performance of JIQ.

(iii) Message overhead performance:
(a) Our proposed policy JBT-d continues to have a low message overhead among all the cases.

(b) Push-based policies such as SQ(d) and SQ(d ,m) have to increase their message overhead

linearly with respect to d to achieve good delay performance as the system size increases.

In contrast, our proposed JBT-d is able to achieve good performance with a message rate

that is less than 1 for all the cases when T is large.

(iv) Confidence interval:
(a) The 95% confidence intervals of the response time under JBT-d is small for all the various

settings as shown in the following figures and the additional results in Appendix E of the

technical report [21].

Next, we will provide details for the three metrics on throughput, delay and message overhead,

respectively.

4.1 Throughput Performance
We investigate the throughput region of different load balancing policies in the case of heteroge-

neous servers. In particular, we consider the case that the system consisting of two server pools

each with five servers and the rates are 1 and 10, respectively. A turning point in the curve indicates

that the load approaches the throughput region boundary of the corresponding policy.

Figure 3 shows that the system becomes unstable when ρ > 0.5 under the policy power-of-2

(SQ(2)), and it becomes unstable under JIQ when ρ > 0.9. In contrast, our proposed JBTG-d policy

remains stable for all the considered loads which agrees with the theoretical results. It can be seen

that JBT-2 is also able to stabilize the system for all the considered loads in this case. Note that the

system remains stable under the power-of-2 with memory policy SQ(2,3), which demonstrates the

benefit of using memory to obtain maximum throughput as first discussed in [14].

We further provide additional simulation results on throughput performance under different

arrival and service process as well as different system sizes in the technical report [21].

4.2 Delay Performance
We investigate the mean response time under different load balancing policies in homogeneous

servers with different system sizes and various arrival and service processes. The time interval for

threshold update of JBT-d is set T = 1000.

Let us first look at the regime when ρ is from 0.3 to 0.99, which ranges from light traffic to heavy

traffic. Figure 4 shows that our proposed policy JBT-d outperforms both power-of-2 and power-of-2

with memory (SQ(2,3), which uses the same amount of memory as in JBT-d) for nearly the whole

regime. Moreover, JBT-d policy achieves nearly the same response time of JIQ when the load is not
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Fig. 3. Throughput performance under 10 heterogeneous servers.
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Fig. 4. Delay performance under 10 homogeneous servers.

too high. However, as the load becomes heavier, the performance of JIQ gets worse and worse, and

its mean response time is as large as two times of the response time under JBT-d policy when the

load is 0.99.
Now, let us get a closer look at the delay performance in heavy-traffic regime, i.e., ρ > 0.9, as

shown in Figure 5. It can be seen that JBT-10 outperforms JIQ when ρ > 0.9 and JBT-2 outperforms
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Fig. 5. Heavy-traffic delay performance under 10 homogeneous servers.
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Fig. 6. Heavy-traffic delay performance under 50 homogeneous servers.

JIQ when ρ > 0.95 in this case. More importantly, the gap between them keeps increasing as the

load gets higher. Note that power-of-2 with memory (SQ(2,3)) also has good performance in this

case, which, however, uses a much higher message rate compared to our JBT-d policy, as discussed

in the next section.
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Fig. 7. Heavy-traffic delay performance under 10 homogeneous servers with Poisson arrival and bursty
service.

Last, we further provide some results on heavy-traffic delay performance for a larger system

size and a bursty service process, respectively. Due to space limitation, the comprehensive results

can be found in the technical report [21]. Figure 6 illustrates the heavy-traffic performance under

Poisson arrival and Poisson service when N = 50. In this case, first thing to note is that even though

the power-of-d with memory policy (SQ(2,9)) uses the same amount of memory as in JBT-d , it has
a much poorer performance with a much higher message overhead since the message overhead

of JBT-d is strictly less than 1 when T = 1000 in this case. This means that to improve delay

performance in large system size, power-of-d with memory has to increase its message overhead

linearly with respect d , while our JBT-d policy is able to achieve good performance with message

rate less than 1 even for d = N . Moreover, as ρ approaches to 1, the performance of JIQ degrades

substantially while our proposed JBT-d remains quite close to JSQ. In Figure 7, the potential number

of jobs served in each time slot is either 0 or 10. In this bursty service case, JIQ degrades much

faster than that in the Poisson service process. Moreover, in this setting we can easily observe the

difference between non-heavy-traffic policy (JIQ) and heavy-traffic optimal policies (all the others).

Note that the message overhead of SQ(2,3) is nearly 8 times as large as that of JBT-d , as shown in

next section, though its delay is slightly better than JBT-d .

4.3 Message Overhead
We use simulations to further show the low message rate of our proposed JBT-d policy, though

a crude upper bound has been established. Here, we consider the 10 homogeneous servers with

Poisson arrival and Poisson service, and more results for different settings can be found in the

technical report [21]. More specifically, we investigate the impact of different values of T , i.e.,
the time interval for updating the threshold, on the message rate and its corresponding delay

performance at a fixed load ρ = 0.99. In particular, we calculate the average number of messages

per new job arrival under each policy. For push-based policies, e.g., JSQ, power-of-2 (SQ(2)) and
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Fig. 8. Message per new job arrival under 10 homogeneous servers with respect to T .
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Fig. 9. Delay performance under 10 homogeneous servers with respect to T .

power-of-2 with memory (SQ(2,3)), the message only includes the push-message and is easily

calculated as 20, 4, and 4, which is independent of T . For JIQ, we know that the rate is at most one

for each new job arrival, which is also independent with T and serves as the benchmark.

Figure 8 shows the message rate of JBT-d with respect to T for different values of d , and the

corresponding delay performance is shown in Figure 9. The first thing to note is that the message
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rate of JIQ is much smaller than one since the traffic is heavy and hence there are few idle servers

in this case, which directly results in the poor performance in the heavy-traffic regime. Second,

the message rate of JBT-d is smaller than all push-based policies and becomes less than one when

T > 100 in this case, which means that it is able to achieve throughput and heavy-traffic delay

optimality by requiring a slightly more message than JIQ. Moreover, it can be seen that as T
increases, there is no significant change of the delay performance, which indicates that we are

allowed to adopt a sufficiently largeT while not incurring the loss of performance very much in this

case. Last, it is worth noting that a larger d does not necessarily mean a larger message overhead

when T is large. This is because when T is large, the push-message in JBT-d will be dominated by

the pull-message. For a small d , the number of pull-message may be larger since the threshold may

be higher than that under a larger d . As shown in the additional results in the technical report [21],

the observations above hold almost for all the considered cases. The exact impact and relationship

of T and d would be one of our future research focuses.

5 PROOF OF MAIN RESULTS
The high-level insight for class Π to be heavy-traffic delay optimal is that it always has a preference

to shorter queues in the way that is specified by the δ -tilted distribution. The key step behind the

proof that JBT-d is heavy-traffic delay optimal is to show that the dispatching distribution for the

time slot that is immediately after the threshold update is always a δ -titled distribution.

5.1 Proof of Theorem 3.7
Before we adopt the sufficient conditions in Lemma 3.5 and Lemma 3.6 to prove Theorem 3.7, we

first present the following lemmas on the tilted distribution and δ -tilted distribution, respectively.

Lemma 5.1. For a system with mean arrival rate λΣ = µΣ − ϵ and a tilted distribution P(t ) under
Z (t ), we have

E [⟨Q(t ),A(t ) − S(t )⟩ | Z (t )] ≤ −ϵ
µmin

µΣ


Q(t )

 (16)

and
E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )] ≤ ϵ

√
N 

Q⊥ (t )

 . (17)

Proof. Consider the left-hand-side (LHS) of Eq. (16)

E [⟨Q(t ),A(t ) − S(t )⟩ | Z (t )]

=

N∑
n=1

Qσt (n) (t )

[(
∆n (t ) +

µσt (n)

µΣ

)
λΣ − µσt (n)

]

(a)
=

N∑
n=1

Qσt (n) (t )∆n (t )λΣ +
N∑
n

Qσt (n) (t )

(
−ϵ

µσt (n)

µΣ

)
(b )
≤

N∑
n=1

Qσt (n) (t )

(
−ϵ

µσt (n)

µΣ

)
(c )
≤ − ϵ

µmin

µΣ


Q(t )

 ,

where equation (a) holds since λΣ = µΣ − ϵ ; (b) comes from the fact that

∑N
n=1Qσt (n) (t )∆n (t ) ≤ 0

under a tilted distribution. This fact is true since Qσt (1) (t ) ≤ Qσt (2) (t ) ≤ . . . ≤ Qσt (N ) (t ) and∑N
n=1 ∆n (t ) = 0; inequality (c) follows from the fact that ∥x∥

1
≥ ∥x∥ for any x ∈ RN .
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Note that Q⊥ (t ) = Q(t ) − Q∥ (t ) = Q(t ) −
∑
Qn (t )
N 1 = Q(t ) − Qavg (t )1, in which Qavg (t ) is the

average queue length among the N servers at time slot t . Then, consider the left-hand-side (LHS)
of Eq. (17)

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )]

=

N∑
n=1

(
Qσt (n) (t ) −Qavg (t )

) [(
∆n (t ) +

µσt (n)

µΣ

)
λΣ − µσt (n)

]

(a)
=

N∑
n=1

Qσt (n) (t )∆n (t )λΣ +
N∑
n

(
Qσt (n) (t ) −Qavg (t )

) (
−ϵ

µσt (n)

µΣ

)
(b )
≤

N∑
n=1

(
Qσt (n) (t ) −Qavg (t )

) (
−ϵ

µσt (n)

µΣ

)
(c )
≤ϵ

N∑
n=1

���(Qσt (n) (t ) −Qavg (t ))
���

(d )
≤ ϵ
√
N 

Q⊥ (t )

 ,

(18)

where equation (a) comes from the facts that

∑N
n=1 ∆n (t ) = 0 and λΣ = µΣ − ϵ ; inequality (b) holds

since

∑N
n=1Qσt (n) (t )∆n (t ) ≤ 0 under a tilted distribution; inequality (c) is true since x ≤ |x | for

any x ∈ R and |ϵ
µσt (n )
µΣ
| ≤ ϵ for all n ∈ N ; inequality (d) is true since ∥x∥

1
≤
√
N ∥x∥ for any

x ∈ RN . □

Lemma 5.2. For a system with mean arrival rate λΣ = µΣ − ϵ and a δ -tilted distribution P(t ) under
Z (t ), we have

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )] ≤
√
N 

Q⊥ (t )



(
ϵ −

δλΣ
N

)
. (19)

Proof. Consider the left-hand-side (LHS) of Eq. (19), we have

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )]

=

N∑
n=1

(
Qσt (n) (t ) −Qavg (t )

) [(
∆n (t ) +

µσt (n)

µΣ

)
λΣ − µσt (n)

]

(a)
=

N∑
n=1

Qσt (n) (t )∆n (t )λΣ +
N∑
n=1

(
Qσt (n) (t ) −Qavg (t )

) (
−ϵ

µσt (n)

µΣ

)
(b )
≤

N∑
n=1

Qσt (n) (t )∆n (t )λΣ + ϵ
√
N 

Q⊥ (t )



(c )
≤ − λΣδ (Qσt (N ) (t ) −Qσt (1) (t )) + ϵ

√
N 

Q⊥ (t )



(d )
≤ − λΣ

δ
√
N



Q⊥ (t )

 + ϵ
√
N 

Q⊥ (t )



=
√
N 

Q⊥ (t )

 (ϵ −

δλΣ
N

),

where equation (a) holds since

∑N
n=1 ∆n (t ) = 0 and λΣ = µΣ − ϵ ; inequality (b) follows from

steps (c) and (d) in Eq. (18); inequality (c) follows from the definition of δ -tilted probability and
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the fact that Qσt (1) (t ) ≤ Qσt (2) (t ) ≤ . . . ≤ Qσt (N ) (t ); inequality (d) follows from the fact that



Q⊥ (t )

 ≤
√
N (Qσt (N ) (t ) −Qσt (1) (t )). □

Now we are ready to present the proof of Theorem 3.7

Proof of Theorem 3.7: The proof is a direct application of the sufficient conditions for through-

put and heavy-traffic delay optimality, i.e., we need only to show Eq. (7) and Eq. (8) hold.

Fix a load balancing policy p in Π. Let us first consider the left-hand-side (LHS) of Eq. (7) with
T1 = T ,

LHS
(a)
=

t0+T−1∑
t=t0

E [⟨Q(t ),A(t ) − S(t )⟩ | Z (t0) = Z ]

(b )
=

t0+T−1∑
t=t0

E [E [⟨Q(t ),A(t ) − S(t )⟩ | Z (t )] |Z (t0) = Z ]

(c )
≤

t0+T−1∑
t=t0

E

[
−ϵ

µmin

µΣ


Q(t )

 | Z (t0) = Z

]

≤ −ϵ
µmin

µΣ


Q(t0)

 ,

where equation (a) comes from the linearity of condition expectation; equation (b) follows from the

tower property of conditional expectation and the fact that Q(t ), A(t ) and S(t ) are conditionally
independent of Z (t0) when given Z (t ). inequality (c) follows from Lemma 5.1 since the policy p
adopts a tilted distribution within every time slot for all Z (t ). Hence, the condition of Lemma 3.5 is

satisfied and thus policy p is throughput optimal.

Let us now turn to consider the left-hand-side (LHS) of Eq. (8) with T2 = T and ϵ < ϵ0 =
δ µΣ

2T N+2δ .

LHS
(a)
=

t0+T−1∑
t=t0

E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t0) = Z ]

(b )
=

t0+T−1∑
t=t0

E [E [⟨Q⊥ (t ),A(t ) − S(t )⟩ | Z (t )] | Z (t0) = Z ]

(c )
≤

∑
t,t ∗
E
[
ϵ
√
N 

Q⊥ (t )

 | Z (t0) = Z

]
+ E

[
√
N 

Q⊥ (t∗)



(
ϵ −

δλΣ
N

)
| Z (t0) = Z

]

(d )
≤ (T − 1)ϵ

√
N (

Q⊥ (t0)

 +M ) +

(
ϵ −

δλΣ
N

)
√
N (

Q⊥ (t0)

 −M )

=

(
Tϵ −

δλΣ
N

)
√
N 

Q⊥ (t0)

 +

√
NM

(
δλΣ
N
+ (T − 2)ϵ

)
(e )
≤

(
Tϵ −

δλΣ
N

)
√
N 

Q⊥ (t0)

 + K2

(f )
≤ −

δµΣ
2N

√
N 

Q⊥ (t0)

 + K2,

where equation (a) comes from the linearity of condition expectation; equation (b) follows from the

tower property of conditional expectation and the fact that Q⊥ (t ), A(t ) and S(t ) are conditionally
independent of Z (t0) when given Z (t ); inequality (c) follows from Lemmas 5.1 and 5.2 since under

policy p ∈ Π there exists at least one time slot t∗ within which at least a δ -tilted distribution (or

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 39. Publication date: December 2017.



39:22 X. Zhou et al.

one of its equivalent distribution in inner-product is δ -tilted) is adopted and for all the other time

slots a tilted distribution is used; inequality (d) follows from the fact | 

Q⊥ (t0 +T )

 − 

Q⊥ (t0)

 | ≤
M = 2T

√
N max{Amax, Smax} and the fact ϵ − δλΣ

N < 0 for all ϵ < ϵ0; inequality (e) comes from the

fact that

√
NM ( δλΣN + (T − 2)ϵ ) ≤ K2 =

√
NM (

δ µΣ
N +T µΣ), which is independent of ϵ ; inequality

(f) holds since ϵ < ϵ0 and λΣ = µΣ − ϵ . Therefore, since both −
δ µΣ
2N

√
N and K2 are independent of ϵ ,

the condition of Lemma 3.6 is satisfied, and hence the policy p is heavy-traffic delay optimal. □

5.2 Proof of Proposition 3.14
Let us first look at assertion 1, i.e., JBT-d is in Π under homogeneous servers. Based on Eq. (15), we

can conclude that for any t ≥ 0, the dispatching distribution is a tilted distribution for all Z (t ). We

are left to show that at time slot rT + 1, r ∈ {0, 1, 2, . . .}, the dispatching distribution is at least a

δ -distribution for some positive δ . This is equivalent to finding the maximum value for PN (rT + 1)
and the minimum value of P1 (rT + 1) for all queue length states. In fact, they are achieved at the

same time when p̃N is in its largest value based on Eq. (14), which is repeated as follows.

Pn (t ) =
N∑
i=n

p̃i (t )
1

i
.

Then, there are two cases to consider.

(a) At time slot rT + 1, the probability for the event that there are N IDs in memory is equal to 1,

i.e., p̃N (rT + 1) = 1, if and only if all the servers have the same queue length at the end of time

slots rT (i.e., sampling slots for updating the threshold), which are also the queue length state at

the beginning of rT + 1, i.e., Q(rT + 1). In this case, it can be easily seen that Pn (rT + 1) =
1

N for

all n, which is not a δ -tilted distribution. However, it is an equivalent distribution in inner-product

to P̂1 (rT + 1) = 1 and P̂n = 0 for 2 ≤ n ≤ N as all the queue lengths are equal, which is indeed a

δ -distribution.
(b) If the queue lengths are not all equal at the end of time slots rT , then the maximum value for

p̃N (rT + 1) is strictly less than 1 and it is obtained when the queue length in the state that there

are N − 1 servers that have the same queue length, which is strictly larger than the remaining one.

In this case, by sampling d servers uniformly at random at the end of times slots rT , the probability
for the event that there are N IDs in memory, i.e., p̃N (rT + 1) is given by

p̃N (rT + 1) = 1 − p̃1 (rT + 1) = 1 −
d

N
.

Therefore, we have P1 (rT +1) =
d
N +

N−d
N 2

and Pn (rT +1) =
N−d
N 2

for 2 ≤ n ≤ N , which is equivalent

in inner product to P̂1 (rT + 1) =
d
N +

N−d
N 2

, P̂2 (rT + 1) = (N − 1) N−dN 2
and P̂n (rT + 1) = 0 for all

3 ≤ n ≤ N as the N − 1 queues have the same queue length. As a result, we have for this state

Z (rT + 1)

∆̂1 (rT + 1) =
d

N
(1 −

1

N
) and ∆̂N (rT + 1) = −

1

N
.

Thus, it is a δ -distribution with δ = min{ dN (1− 1

N ), 1N }, which is the lower bound for δ . That is, for
any state Z (rT + 1), the dispatching distribution is at least a δ -distribution. Therefore, every T + 1
time slots, there exists one time slot in which the dispatching distribution (or an inner product

equivalent distribution) is at least a δ -tilted distribution with δ = min{ dN (1 − 1

N ), 1N }.
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The proof for heterogeneous servers follows exact the same idea with additional care on the

service rate. The probability for the server σt (n) to be selected at time t , i.e., Pn (t ) is given by

Pn (t ) = µσt (n)

N∑
i=n

p̃i (t )∑
{j ∈m (t ), |m (t ) |=i } µ j

.

From it we can easily see that if ∆n (t ) = Pn (t ) −
µσt (n )
µΣ

is positive, then we must have that ∆n−1 (t )

is also positive as it has one more term in the equation above. Therefore, we can find a k between

2 and N such that ∆n (t ) = Pn (t ) −
µσt (n )
µΣ
≥ 0 for all n < k and ∆n (t ) ≤ 0 for all n ≥ k . Therefore,

condition (i) of Π is satisfied.

For the condition (ii), we need to find the maximum value of p̃N (rT + 1) to bound δ . There are
also two cases as before.

(a) If p̃N (rT + 1) = 1, then we must have that the queue lengths are all equal at the end of time

slots rT , which is the same as that at the beginning of time slot rT +1. In this case, Pn (rT +1) =
µσt (n )
µΣ

for all n. Note that this dispatching distribution is an equivalent distribution in inner-product to

P̂1 (rT +1) = 1 and P̂n = 0 for 2 ≤ n ≤ N as all the queue lengths are equal, which is a δ -distribution.
(b) If p̃N (rT + 1) , 1, the maximum value of p̃N (rT + 1) is obtained when there are N − 1 servers

that have the same queue length, which is strictly larger than the remaining one. In this case, we

have p̃N (rT + 1) = 1 − p̃1 (rT + 1) = 1 − d
N as before. Thus, we can obtain

P1 (rT + 1) =
d

N
+

(
1 −

d

N

)
µσt (1)

µΣ
,

and Pn (rT + 1) = (1 − d
N )

µσt (n )
µΣ

for 2 ≤ n ≤ N . This is equivalent in inner product to P̂1 (rT + 1) =

P1 (rT + 1), P̂2 (rT + 1) =
∑N

n=2 Pn (rT + 1) and P̂n (rT + 1) = 0 for all 3 ≤ n ≤ N since the last N − 1
servers have the same queue lengths. As a result, we have for this Z (rT + 1)

∆̂1 (rT + 1) =
d

N

(
1 −

µσt (1)

µΣ

)
and ∆̂N (rT + 1) = −

µσt (N )

µΣ
.

Thus, it is a δ -distribution with δ = min{ dN (1 −
µmax
µΣ

),
µmin
µΣ
}, in which µmax = maxn∈N µn and

µmin = minn∈N µn , which is the lower bound of δ . Hence, for any Z (rT + 1), the dispatching

probability distribution (or its inner product equivalent one) is at least a δ -distribution. □

6 CONCLUSION
We introduce a class Π of flexible load balancing policies, which are shown to be throughput and

heavy-traffic delay optimal. This class includes as special cases JSQ, power-of-d, and also allows

flexibility in designing other new policies. The JIQ policy, albeit exhibiting a good performance

when the traffic load is not heavy, is not in Π since it is not heavy-traffic delay optimal even for

homogeneous servers. A new policy called JBT-d is proposed in the class Π, which enjoys the

simplicity of JIQ while guaranteeing heavy-traffic delay optimal. A unified analytic framework

is established to characterize this class of policies by exploring their common characteristics and

provide sufficient conditions that guarantee the heavy-traffic delay optimality. Extensive simulations

are used to demonstrate the good performance and low complexity of the proposed policy compared

to other existing ones.
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A PROOF OF LEMMA 3.5
Before we present the proof of Lemma 3.5, we first introduce two lemmas which will be the

key ingredients in the proof. The first lemma enables us to bound the moments of a stationary

distribution based on drift condition, which can be simplified by the second lemma.

The following lemma is introduced in [18], which is an extension of Lemma 1 in [2] and can be

proved from the results in [7].

Lemma A.1. For an irreducible aperiodic and positive recurrent Markov chain {X (t ), t ≥ 0} over a
countable state space X, which converges in distribution to X , and supposeV : X → R+ is a Lyapunov
function. We define the T time slot drift of V at X as

∆V (X ) := [V (X (t0 +T )) −V (X (t0))]I (X (t0) = X ),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 39. Publication date: December 2017.

http://arxiv.org/abs/1710.04357


Designing Low-Complexity Heavy-traffic Delay-Optimal Load Balancing Schemes 39:25

where I (.) is the indicator function. Suppose for some positive finite integer T , the T time slot drift of
V satisfies the following conditions:

• (C1) There exists an γ > 0 and a κ < ∞ such that for any t0 = 1, 2, . . . and for all X ∈ X with
V (X ) ≥ κ,

E [∆V (X ) | X (t0) = X ] ≤ −γ .

• (C2) There exists a constant D < ∞ such that for all X ∈ X,

P( |∆V (X ) | ≤ D) = 1.

Then {V (X (t )), t ≥ 0} converges in distribution to a random variable V , and there exists constants
θ ∗ > 0 and C∗ < ∞ such that E

[
eθ
∗V
]
≤ C∗, which directly implies that all moments of random

variable V exist and are finite. More specifically, there exist finite constants {Mr , r ∈ N} such that for
each positive r , E

[
V (X )r

]
≤ Mr , whereMr are fully determined by κ, γ and D.

Lemma A.2. For any t ≥ 0, we have



Q(t + 1)

2 − 

Q(t )

2 ≤ 2⟨Q(t ),A(t ) − S(t )⟩ + K (20)

where K is a finite constant.

Proof. Consider the left-hand-side (LHS) of Eq. (20).

LHS = 

Q(t ) + A(t ) − S(t ) + U(t )

2 − 

Q(t )

2

(a)
≤ 

Q(t ) + A(t ) − S(t )

2 − 

Q(t )

2

= 2⟨Q(t ),A(t ) − S(t )⟩ + ∥A(t ) − S(t )∥2

(b )
≤ 2⟨Q(t ),A(t ) − S(t )⟩ + K

where inequality (a) holds as [max(a, 0)]2 ≤ a2 for anya ∈ R; in inequality (b),K ≜ N max(Amax, Smax)
2

holds due to the assumptions that AΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for all t ≥ 0 and all n ∈ N , and

independent of the queue length. □

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5: The proof follows from the application of Lemma A.1 to the Markov chain

{Z (ϵ ) (t ), t ≥ 0} with Lyapunov functionV (Z (ϵ ) ) := 


Q
(ϵ )


 and T = T1 sincem

(ϵ ) (t ) is always finite.

In particular, this proof is completed in two steps, where the superscript
(ϵ )

will be omitted for ease

of notations.

(i) First, in order to apply Lemma A.1, we need to show that the Markov chain {Z (t ), t ≥ 0} is

irreducible, aperiodic and positive recurrent under the hypothesis of Lemma 3.5. It can be easily

seen that {Z (t ), t ≥ 0} is irreducible and aperiodic. Thus, we are left with the task to prove that the

Markov chain is positive recurrent. By the extension of Foster-Lyapunov theorem, it suffices to

find a Lyapunov function and a positive constant T such that the expected T time slot Lyapunov

drift is bounded within a finite subset of the state space and negative outside this subset.
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Consider the Lyapunov functionW (Z ) := 

Q

2, and the corresponding expected T1 time slot

mean conditional Lyapunov drift under the hypothesis of Lemma 3.5.

E [W (Z (t0 +T1)) −W (Z (t0)) | Z (t0)]

=E
[

Q(t0 +T1)

2 − 

Q(t0)

2 | Z (t0)

]

=E


t0+T1−1∑
t=t0

(

Q(t + 1)

2 − 

Q(t )

2
)
| Z (t0)


(a)
≤E



t0+T1−1∑
t=t0

2⟨Q(t ),A(t ) − S(t )⟩ + K | Z (t0)


(b )
≤ − 2γ 

Q(t0)

 + 2K1 + KT1

(21)

where inequality (a) follows from Lemma A.2, and inequality (b) results directly from the hypothesis

in Eq. (7). Pick any β > 0 and let B = {Z ∈ S :


Q

 ≤

2K1+KT1+β
2γ }. Then B is a finite subset of S as

m(t ) is finite. Moreover, for any Z ∈ B, the conditional mean drift is less or equal to 2K1 + KT1,
and for any Z ∈ Bc

, it is less than or equal to −β . This finishes the proof of positive recurrence for
any ϵ > 0, and hence throughput optimal.

(ii) Second, in order to show that the hypothesis in Lemma 3.5 also ensures the bounded moments

for the stationary distribution, we will resort to Lemma A.1. Thus, we need to check Conditions

(C1) and (C2), respectively.

For Condition (C1), we have

E [∆V (Z ) | Z (t0) = Z ]

=E [

Q(t0 +T1)

 − 

Q(t0)

 | Z (t0) = Z ]

=E

[√


Q(t0 +T1)

2 −

√


Q(t0)

2 | Z (t0) = Z

]

(a)
≤

1

2


Q(t0)



E
[

Q(t0 +T1)

2 − 

Q(t0)

2 | Z (t0) = Z

]

(b )
≤ − γ +

2K1 + KT1
2


Q(t0)



where inequality (a) follows from the fact that f (x ) =
√
x is concave; (b) comes from the upper

bound in Eq. (21). Hence, (C1) in Lemma A.1 is verified.

For Condition (C2), we have

|∆V (Z ) | = | 

Q(t0 +T1)

 − 

Q(t0)

 |I (Z (t0) = Z )

(a)
≤ 

Q(t0 +T1) − Q(t0)

I (Z (t0) = Z )

(b )
≤ T1
√
N max(Amax, Smax)

where inequality (a) follows from the fact that | ∥x∥ − 

y

 | ≤ 

x − y

 holds for any x, y ∈ RN ;
inequality (b) holds due to the assumptions that theAΣ (t ) ≤ Amax and Sn (t ) ≤ Smax for all t ≥ 0 and

all n ∈ N , and independent of the queue length. This verifies Condition (C2) and hence complete

the proof of Lemma 3.5. □
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B PROOF OF LEMMA 3.6
We now proceed to prove Lemma 3.6. Before we present the proof, the following lemmas which

serve as useful preliminary steps are first introduced. Denote by Q∥ and Q⊥ the parallel and

perpendicular components of the queue length vector Q with respect to the line c = 1√
N
1, i.e.,

Q∥ := ⟨c,Q⟩c Q⊥ := Q − Q∥ (22)

The following lemma is a natural extension of Lemma 7 in [2] to T time slots.

Lemma B.1. Define the following Lyapunov functions

V⊥ (Z ) := 

Q⊥

 ,W (Z ) := 

Q

2 andW∥ (Z ) := 

Q∥

2

with the corresponding T time-slot drift given by

∆V⊥ (Z ) := [V⊥ (Z (t0 +T )) −V⊥ (Z (t0))]I (Z (t0) = Z )

∆W (Z ) := [W (Z (t0 +T )) −W (Z (t0))]I (Z (t0) = Z )

∆W∥ (Z ) := [W∥ (Z (t0 +T )) −W∥ (Z (t0))]I (Z (t0) = Z )

Then, the drift of V⊥ (.) can be bounded in terms ofW (.) andW∥ (.) as follows.

∆V⊥ (Z ) ≤
1

2


Q⊥



(∆W (Z ) − ∆W∥ (Z ))

for all Z ∈ S.

Lemma B.2. For any t ≥ 0, we have


Q∥ (t + 1)

2 − 

Q∥ (t )

2 ≥ 2⟨Q∥ (t ),A(t ) − S(t )⟩.

Proof.



Q∥ (t + 1)

2 − 

Q∥ (t )

2

=2⟨Q∥ (t ),Q∥ (t + 1) − Q∥ (t )⟩ + 

Q∥ (t + 1) − Q∥ (t )

2

≥2⟨Q∥ (t ),Q∥ (t + 1) − Q∥ (t )⟩
=2⟨Q∥ (t ),Q(t + 1) − Q(t )⟩ − 2⟨Q∥ (t ),Q⊥ (t + 1) − Q⊥ (t )⟩
(a)
≥ 2⟨Q∥ (t ),Q(t + 1) − Q(t )⟩

(b )
≥ 2⟨Q∥ (t ),A(t ) − S(t )⟩

where the inequality (a) is true because ⟨Q∥ (t ),Q⊥ (t )⟩ = 0 and ⟨Q⊥ (t + 1),Q∥ (t )⟩ = 0; (b) follows

from the fact that all the components of Q∥ (t ) and U(t ) are nonnegative. □

We are now ready to prove the following result, which is often called state space collapse and is

the key ingredient for establishing heavy traffic delay optimality. It shows that under the hypothesis

of Lemma 3.6, the multi-dimension space for the queue length vector will reduce to one dimension

in the sense that the deviation from the line c is bounded by a constant, which is independent with

the heavy-traffic parameter ϵ .

Lemma B.3. If the assumptions in Lemma 3.6 hold, then we have that Q⊥ is bounded in the sense
that in steady state there exists finite constants {Lr , r ∈ N} such that

E
[



Q

(ϵ )
⊥






r ]
≤ Lr

for all ϵ ∈ (0, ϵ0) and r ∈ N.
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Proof. It suffices to show that V⊥ (Z ) satisfies the Conditions (C1) and (C2) in Lemma A.1. Fix

ϵ ∈ (0, ϵ0), and the superscript will be omitted for simplicity in the following arguments.

(i) For the Condition (C1), let Λ(t ) := 

Q(t + 1)

2−

Q(t )

2 and Λ ∥ (t ) := 

Q∥ (t + 1)

2−

Q∥ (t )

2.
Then, we have

E [∆V⊥ (Z ) | Z (t0) = Z ]

(a)
≤

1

2


Q⊥



E
[
∆W (Z ) − ∆W∥ (Z ) | Z (t0) = Z

]
=

1

2


Q⊥



E


t0+T2−1∑
t=t0

Λ(t ) − Λ ∥ (t ) | Z (t0) = Z


(b )
≤

1

2


Q⊥ (t0)



E


t0+T2−1∑
t=t0

2⟨Q⊥ (t ),A(t ) − S(t )⟩ + K | Z (t0) = Z


(c )
≤ − η +

2K2 + KT2
2


Q⊥ (t0)



,

where the inequality (a) follows from Lemma B.1; the inequality (b) holds as a result of Lemmas

A.2 and B.2; the inequality (c) follows directly from the assumption in Eq. (8). Hence, the Condition

(C1) is verified.

(ii) For the Condition (C2), we have

|∆V⊥ (Z ) |

=| 

Q⊥ (t0 +T2)

 − 

Q⊥ (t0)

 |I (Z (t0) = Z )

(a)
≤ 

Q⊥ (t0 +T2) − Q⊥ (t0)

I (Z (t0) = Z )

= 

Q(t0 +T2) − Q∥ (t0 +T2) − Q(t0) + Q∥ (t0)

I (Z (t0) = Z )

(b )
≤ 

Q(t0 +T2) − Q(t0)

 + 

Q∥ (t0 +T2) − Q∥ (t0)

I (Z (t0) = Z )

(c )
≤2 

Q(t0 +T2) − Q(t0)

I (Z (t0) = Z )

(d )
≤ 2T2

√
N max(Amax, Smax) (23)

where the inequality (a) follows from the fact that | ∥x∥ − 

y

 | ≤ 

x − y

 holds for any x, y ∈ RN ;
inequality (b) follows from triangle inequality; (c) holds due to the non-expansive property of

projection to a convex set. (d) holds due to the assumptions that theAΣ (t ) ≤ Amax and Sn (t ) ≤ Smax

for all t ≥ 0 and all n ∈ N , and independent of the queue length. This verifies Condition (C2) and

hence complete the proof of Lemma B.3. □

The following result on the unused service is another key ingredient for establishing heavy-traffic

delay optimal.

Lemma B.4. For any ϵ > 0 and t ≥ 0, we have

Q (ϵ )
n (t + 1)U (ϵ )

n (t ) = 0 and q (ϵ ) (t + 1)u (ϵ ) (t ) = 0.

If the system has a finite first moment, then we have for some constants c1 and c2

E

[



U
(ϵ )





2

]
≤ c1ϵ and E

[
(u (ϵ ) )2

]
≤ c2ϵ
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Proof. According to the queue dynamic in Eq. (1), we can see whenUn (t ) is positive, Qn (t + 1)

must be zero, which gives the results Q (ϵ )
n (t + 1)U (ϵ )

n (t ) = 0 for all n ∈ N and all t ≥ 0, and the

corresponding result for the resource-pooled system q (ϵ ) (t + 1)u (ϵ ) (t ) = 0.

Then, let us consider the Lyapunov functionW1 (Z (t )) = 

Q(t )

1. In the steady state with a finite

first moment, the mean drift ofW1 (Z (t )) is zero. Then, we have

0 = E
[


A

(ϵ )


1 − ∥S∥1 +




U

(ϵ )



1

]

which directly implies

E
[



U

(ϵ )



1

]
= ϵ (24)

Moreover, due to the fact thatUn (t ) ≤ Smax for all n ∈ N and t ≥ 0, we have





U
(ϵ )





2

≤ Smax





U
(ϵ )



1

.

Therefore, we can conclude that E

[



U
(ϵ )





2

]
≤ Smaxϵ and E

[
(u (ϵ ) )

2

]
≤ NSmaxϵ . □

Now, we are well prepared to prove Lemma 3.6

Proof of Lemma 3.6: First, let us consider the Lyapunov function V1 (Z ) := 

Q

21 and the corre-

sponding conditional mean drift, defined as D1 (Z (t )) := E [V1 (Z (t + 1)) −V1 (Z (t )) | Z (t ) = Z ] .
Then, we have the following equation, in which the time reference (t ) will be omitted after the

second step for brevity and Q+ := Q(t + 1).

D1 (Z (t ))

=E
[

Q(t + 1)

21 − 

Q(t )

21 | Z (t ) = Z

]

=E
[(

Q(t )

1 + ∥A(t )∥1 − ∥S(t )∥1 + ∥U(t )∥1

)
2

| Z (t ) = Z
]
− E

[

Q(t )

21 | Z (t ) = Z
]

=E
[
2


Q

1 (∥A∥1 − ∥S∥1) + (∥A∥

1
− ∥S∥

1
)2 + 2

(

Q

1 + ∥A∥1 − ∥S∥1) ∥U∥1 + ∥U∥21 | Z ]
=E

[
2


Q

1 (∥A∥1 − ∥S∥1) + (∥A∥

1
− ∥S∥

1
)2 + 2



Q+

1 ∥U∥1 − ∥U∥21 | Z
]

≤E
[
2


Q

1 (∥A∥1 − ∥S∥1) + (∥A∥

1
− ∥S∥

1
)2 + 2



Q+

1 ∥U∥1 | Z
]

(25)

Under the assumptions of Lemma 3.6, there exists a steady-state distribution with finite moments

for any ϵ > 0. Therefore, the mean drift in steady-state is zero, i.e., E
[
D1 (Z

(ϵ )
)
]
= 0. Therefore,

taking the expectation of both sides of Eq. (25) with respect to the steady-state distribution Z
(ϵ )
,

yields

ϵE


N∑
n=1

Q
(ϵ )
n


≤

ζ (ϵ )

2

+ E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]

where ζ (ϵ ) = (σ (ϵ )
Σ )2 + ν2Σ + ϵ

2
. For the resource-pooled system, by letting N = 1 in Eq. (25) and

taking the expectation with respect to q (ϵ ) , we have

ϵE
[
q (ϵ )

]
=

ζ (ϵ )

2

+ E
[
q (ϵ ) (t + 1)u (ϵ ) (t )

]
−
1

2

E
[
(u (ϵ ) )2

]
.

Then, based on the property on the unused service in Lemma B.4, we have

ζ (ϵ )

2

−
c2
2

ϵ ≤ ϵE
[
q (ϵ )

]
≤ ϵE



N∑
n=1

Q
(ϵ )
n


≤

ζ (ϵ )

2

+ B
(ϵ )

(26)
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where B
(ϵ )

:= E
[



Q

(ϵ )
(t + 1)





1




U

(ϵ )
(t )





1

]
.

Therefore, in order to show heavy-traffic delay optimality, all we need to show is that limϵ ↓0 B
(ϵ )
=

0. Note that B
(ϵ )

can be bounded as follows.

B
(ϵ ) (a)
= NE

[
⟨U

(ϵ )
(t ),−Q

(ϵ )
⊥ (t + 1)⟩

]

(b )
≤ N

√
E

[



U
(ϵ )
⊥ (t )






2

]
E

[



Q
(ϵ )
⊥ (t + 1)






2

]

(c )
= N

√
E

[



U
(ϵ )
⊥ (t )






2

]
E

[



Q
(ϵ )
⊥ (t )






2

]
,

where the equality (a) comes from the propertyQ (ϵ )
n (t + 1)U (ϵ )

n (t ) = 0 for all n ∈ N and all t ≥ 0 in

Lemma B.4 and the definition of Q⊥; the inequality (b) holds due to Cauchy-Schwartz inequality;

the last equality (c) is true since the distributions of Q
(ϵ )
⊥ (t + 1) and Q

(ϵ )
⊥ (t ) are the same in steady

state.

As shown in Lemma B.3, E

[



Q
(ϵ )
⊥






2

]
≤ L2 holds for all ϵ ∈ (0, ϵ0) and some constant L2 which

is independent of ϵ . Meanwhile, note that E

[



U
(ϵ )





2

]
≤ c1ϵ for some c1 independent of ϵ based on

Lemma B.4. Then, we have for all ϵ ∈ (0, ϵ0)

B
(ϵ )
≤ N

√
c1ϵL2 (27)

Therefore, it can be seen fromEq. (27) that limϵ ↓0 B
(ϵ )
= 0, which directly implies limϵ ↓0 ϵE

[∑
n Q

(ϵ )
n

]
=

limϵ ↓0 ϵE
[
q (ϵ )

]
, and thus the proof of Lemma 3.6 is completed. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 39. Publication date: December 2017.

Received August 2017; revised October 2017; accepted December 2017.


	Abstract
	1 Introduction
	1.1 Related work: push versus pull
	1.2 Notations

	2 Model and Definitions
	2.1 Model Description
	2.2 Definitions

	3 Main Results
	3.1 The Class of Load Balancing Policies  
	3.2 Important Policies in 
	3.3 Designing New Policies in 
	3.4 Features of JBT-d

	4 Numerical Results
	4.1 Throughput Performance
	4.2 Delay Performance
	4.3 Message Overhead

	5 Proof of Main Results
	5.1 Proof of Theorem 3.7
	5.2 Proof of Proposition 3.14

	6 Conclusion
	References
	A Proof of Lemma 3.5
	B Proof of Lemma 3.6



