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Abstract—The design of wireless communication systems un-
der holistic power models has been being a hot topic in green
communications. In this letter, we shall investigate the antenna
selection in multi-stream MIMO with circuit power consumption.
The difficulty lies in the fact that the optimal active antennas can
only be selected by exhaustive search. To reduce the complexity,
two iterative properties of MIMO capacity with antenna selection
under a holistic power model are first derived in this letter.
An efficient iterative antenna selection algorithm can then be
obtained directly from these properties. This algorithm enjoys
a low complexity, and can be applied to both the transmitter
and receiver. Simulation results will verify that the proposed
algorithm achieves the near-optimal performance compared to
exhaustive search.

Index Terms—MIMO, antenna selection, multi-stream, itera-
tive, holistic power model.

I. INTRODUCTION

M IMO (multiple-input-multiple-output) is an emerging
technology that significantly increases the data rates

and reliability for communication systems [1]. Conventionly,
more antennas achieve higher multiplexing and diversity gains.
However, adopting multiple antennas will consume more
circuit power when a holistic power model is considered [2].
Therefore, how to design energy-efficient schemes yet incur
little performance loss in MIMO systems is highly important.

Antenna selection schemes in which only a subset of
available antennas are active for transmitting or receiving
could reduce the power consumption. In conventional antenna
selection, the circuit power consumption is not considered
and the constraint is only the transmission power. The goal
is just to select an optimal subset of antennas to maximize the
channel capacity. The authors in [3] proposed a fast antenna
selection for point-to-point MIMO systems. Antenna selection
for MU-MIMO systems has been investigated in [4]. However,
the works in [5], [6] have shown that the antenna selection
under a holistic power model is significantly different from
conventional works. In this case, a dynamic change of active
antennas must be applied to improve the spectral and energy
efficiency. Jiang and Cimini in [5] consider this problem in
a single data stream MIMO system where the transmission
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power and active antennas are jointly optimized to maximize
the energy efficiency. In [6], a comparison is made between the
energy efficiency of the transmit beamforming and the transmit
antenna selection with a single RF chain. However, the antenna
selection scheme for multi-stream MIMO systems under a
holistic power model is more complicated as the received SNR
of each stream must be optimized, which has not been studied
in a systematic way.

In this paper, we propose a low complexity and near-
optimal antenna selection algorithm for capacity maximization
in a multi-stream MIMO system where the circuit power is
considered. The iterative algorithm is based on the observation
that there exists an iterative property of capacity with antenna
selection. Therefore, we select one antenna which leads to the
highest increment of capacity at each step. More importantly,
the marginal benefit of adding one more antenna can be proved
to diminishes with iteration by using the Cauchy’s interlace
theorem, which is leveraged to reduce the complexity even
further. Moreover, the proposed algorithm can be applied to
both the receive and transmit antenna selection. Simulation
results show that it achieves near-optimal performance in both
low and high SNR regimes.

II. SYSTEM MODEL

Consider a point-to-point MIMO system with Nt transmit
and Nr receive antennas. Assume that the channel experiences
flat fading. The signal model of the considered MIMO system
is given by

y = Hs + n, (1)

where H is the channel matrix whose Nr×Nt entries are i.i.d
complex circular symmetric Gaussian random variables with
zero-mean and unit variance. s and y represent the transmitted
and received signals, respectively. n is the additive white
Gaussian noise vector, each of whose elements is circularly
symmetric complex random variable with zero mean and
variance N0. The channel state information (CSI) is only
perfectly known at the receiver. Therefore the instantaneous
capacity of the signal model in Eq. (1) is given by [1]

C =

{
Cr(H) = log det(INt +

ρ
Nt

HHH); receive selection

Ct(H) = log det(INr +
ρ
Nt

HHH); transmit selection
(2)

where ρ = Pt/N0 is the common SNR at each receive
antenna. Pt is the transmission power.

In [7], the power consumption of RF chains and other
circuits in MIMO is captured by

Pc = Lt · Pct + Lr · Pcr + Pc0, (3)
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where Lt and Lr are the number of active transmit and receive
RF chains, respectively. Pct and Pcr stand for the power
consumed by each transmit and receive RF chain. Pc0 is the
power of frequency synthesizer and other units of circuits.
Thus, the overall power consumption of MIMO system can
be obtained as

P =
1

ηpa
· Pt + Pc, (4)

where ηpa is the drain efficiency of the power amplifier.

III. ANTENNA SELECTION ALGORITHM

In this section, we propose a low complexity algorithm to
achieve the near-optimal antenna selection performance. Our
aim is to find the optimal number and subset of active receive
or transmit antennas that achieves the maximum capacity
under the constraint of a total power consumption P . The
best submatrix HΩ can only be obtained by exhaustive search
which is complexity prohibitive. To avoid this problem, we
propose a low complexity iterative algorithm. The fundamental
idea behind this algorithm has two key points: 1) judiciously
select one receive or transmit antenna which leads to the
highest increment of capacity at each step; 2) decide when
to stop the iteration in advance.

The proposed algorithm relys on the following two facts.
One is that there exists an iterative property of channel
capacity of MIMO systems where the receive or transmit
antenna selection is adopted, which is stated in Lemma 1 and
2. The other one is that the marginal benefit of adding one
more antenna is proved to be in descending order by using
the Cauchy’s interlace theorem, which is stated in Theorem 1.

We denote by Hn the channel matrix after n steps of
selection of antenna. At the (n+1)th step, if the s∗th row or
column of H is selected, the new (n+1)×Nt or Nr×(n+1)
channel matrix is denoted by Hn+1. hs is a column vector
which stands for the transpose of the sth row for receive
antenna selection and the sth column for transmit antenna
selection.

Lemma 1: With receive antenna selection, the capacity of
a MIMO system with circuit power consumption could be
expressed by the following iterative equation.

Cr(Hn+1) = Cr(Hn) +Dr(Hn) + log(1 + Δr,s,n) (5)

where

Dr(Hn)
Δ
= log det(In− ηpaPcr

N0Nt
Hn(INt +

ρr,n
Nt

HH
n Hn)

−1HH
n )

(6)

Tr,n
Δ
= (INt

Nt

ρr,n+1
+ HH

n Hn)
−1 (7)

Δr,s,n
Δ
= hH

s Tr,nhs (8)

Proof: See Appendix A. ρr,n is defined in Eq. (23).
Lemma 2: With transmit antenna selection, the capacity of

a MIMO system with circuit power consumption could be
expressed by the following iterative equation.

Ct(Hn+1) = Ct(Hn) +Dt(Hn) + log(1 + Δt,s,n) (9)

where

Dt(Hn)
Δ
= log det(In −mnHH

n (INr +
ρt,n
n

HnHH
n )−1Hn)

(10)
mn =

ρt,n
n

− ρt,n+1

n+ 1
(11)

Tt,n
Δ
= (INr

n+ 1

ρt,n+1
+ HnHH

n )−1 (12)

Δt,s,n
Δ
= hH

s Tt,nhs (13)

Proof: See Appendix B. ρt,n is defined in Eq. (28).
Remark 1: The two lemmas help to decouple the effect of

antenna selection in MIMO systems.
We choose α as an indicator of the receive or transmit an-

tenna selection whose value is either ‘r’ or ‘t’. Then Dα(Hn)
represents the effect of the circuit power consumption. The
contribution of adding one antenna is depicted by the term
log(1+Δα,s,n). It motivates us to find the s∗th row or column
that brings the largest contribution at each step, which is
equivalent to the following problem.

s∗ = argmax
s

Δα,s,n. (14)

Theorem 1: Both Dα(Hn) and Δα,s,n decrease as n in-
creases. Dα(Hn) is always negative and Δα,s,n keeps positive.

Proof: Here we take the receive antenna selection as
an example. The same proof works for the transmit antenna
selection. To verify the property of Dr(Hn), let Hn = UΣVH

be the SVD decomposition of Hn, where U and V are unitary
matrices. We write

Bn = In − aHn(INt + bnHH
n Hn)

−1HH
n , (15)

where a =
ηpaPcr

N0Nt
, bn =

ρr,n

Nt
and bn − a = ρr,n+1 ≥ 0. With

the SVD decomposition and some linear algebra computations,
we could obtain

Bn = U(1− aΣ2

1 + bnΣ2
)UH . (16)

Since Dr(Hn) = log det(Bn), it follows that

Dr(Hn) = log(

n∏
i=1

(1− aσ2
i

1 + bnσ2
i

))

= log(

n∏
i=1

(1− aλi

1 + bnλi
)),

(17)

where σi is the ith singular value of Hn and λi = σ2
i is the

ith eigenvalue of HnHH
n . For every i, the term (1 − aλi

1+bnλi
)

is less than 1. Thus Dr(Hn) is always negative. Next, to deal
with the descending property of Dr(Hn), we note that

Hn+1HH
n+1 =

[
HnHH

n Hnhs∗

hH
s∗HH

n hH
s∗hs∗

]
, (18)

where hH
s∗ is the selected row at the last step. Its ith eigenvalue

is denoted by λ∗
i . As bn+1 < bn, we have

Dr(Hn+1) = log(

n+1∏
i=1

(1− aλ∗
i

1 + bn+1λ∗
i

))

< log(

n∏
i=1

(1− aλ∗
i

1 + bnλ∗
i

) · (1 − aλ∗
n+1

1 + bnλ∗
n+1

)).

(19)
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The Cauchy’s interlace theorem [8] states that the eigenvalues
of a Hermitian matrix of order n+1 are interlaced with those
of any principal submatrix of order n. Here, λ∗

n+1 ≤ λ∗
n ≤

λ∗
n−1 ≤ · · · ≤ λ∗

1 lists the eigenvalues of Hn+1HH
n+1. λn ≤

λn−1 ≤ · · · ≤ λ1 are the eigenvalues of HnHH
n . By using the

Cauchy’s interlace theorem, we have

λ∗
n+1 ≤ λn ≤ λ∗

n ≤ · · ·λ2 ≤ λ∗
2 ≤ λ1 ≤ λ∗

1 (20)

Define f(λ) = 1− aλ
1+bnλ

and it is easy to verify the function of
λ is monotonically decreasing. So with (20), we can conclude
from Eq. (17) and Eq. (19) that Dr(Hn+1) < Dr(Hn).

Next, we shall verify the property of Δr,s,n. Assume that
at the nth step, the s∗th is selected. Thus we get Tr,n+1 =
(INt

Nt

ρr,n+2
+ HH

n Hn + hs∗hH
s∗)

−1. Applying the Woodbury
matrix formula to it yields

Tr,n+1 = T̃r,n − T̃r,nhs∗(1 + Δ̃r,s∗,n)
−1hH

s∗ T̃r,n, (21)

where T̃r,n = (INt

Nt

ρr,n+2
+HH

n Hn)
−1, Δ̃r,s∗,n = hH

s∗ T̃r,nhs∗ .

The SVD decompositions of Tr,n+1, T̃r,n and Tr,n can be
denoted by Tr,n+1 = VΣVH , T̃r,n = UΣ1UH and Tr,n =
UΣ2UH . As they are all symmetric matrices, the diagonal
elements in Σ, Σ1 and Σ2 are all positive. Thus, Δr,s,n

keeps positive. Since ρr,n+2 < ρr,n+1, the elements in Σ1

are component-wise less than that in Σ2. Thus we have

Δr,s,n+1 = hH
s Tr,n+1hs

= hH
s T̃r,nhs − hH

s T̃r,nhs∗(1 + Δ̃s∗,n)
−1hH

s∗ T̃r,nhs

< hH
s UΣ1UHhs

< hH
s UΣ2UHhs = hH

s Tr,nhs = Δr,s,n.
(22)

Theorem 1 reveals the fact that the marginal benefit of
adding one more antenna is diminishing and even may be
negative, which verifies that activating more antennas is not
always the best choice under a holistic power model. This fact
can be leveraged to reduce the complexity of computation even
further. Once the capacity for the current iteration is less than
the last one, we break from the loop and immediately obtain
the optimal antenna selection.

Based on the lemmas and theorem stated before, an efficient
iterative algorithm is proposed. The details of the algorithm are
presented in Algorithm I. It can be seen that at each step the
optimal selection is captured by Eq. (14). Once the capacity
is decreased, stop the iteration immediately. Moreover, this
algorithm involves both the receive and transmit antenna
selection with the indicator α which stands for either ‘r’ or
‘t’. For example, if α has the value of ‘r’, the algorithm will
implement the receive antenna selection and ᾱ is equal to ‘t’.
The maximum number of iterations is linear with Nmax but
it could be largely reduced by Theorem 1.

IV. SIMULATION RESULTS

In this section, simulation results are provided to demon-
strate the performance of the proposed algorithm. The value
for the parameters Pct, Pcr , Pc0 and ηpa are 120mW, 85mW,
30mW, 0.35, which are adopted from [7]. d is the distance
between the transmitter and receiver. Log-distance path loss
with a exponent of 4 is adopted. Nt and Nr are both 8.

Algorithm I
THE ANTENNA SELECTION ALGORITHM

Input: P , Pcr , Pct, Pc0, N0, H, α
Output: HΩ

Initial: Nmax = (P −NᾱPcᾱ − Pc0)/Pcα,
capacity = zeros(1, Nmax), Θ = {1, 2 . . . Nα}, H0 = ∅
for s = 1, . . . , Nα

Δs := ‖H(s, :)‖2 (α = ‘r’) or Δs := ‖H(:, s)‖2 (α = ‘t’)
end
for n = 1, . . . , Nmax

s∗ := argmaxs∈ΘΔs

Θ := Θ− {s∗}
Hn := [Hn−1;H(s∗, :)] (α = ‘r’ )
or Hn := [Hn−1,H(:, s∗)] (α = ‘t’ )
capacity(n) := compute(Hn, ρα,n)

if capacity(n) < capacity(n− 1)

break
else if (α==‘r’)

Tn := (INt
Nt

ρr,n+1
+ HH

n Hn)
−1

Δs := H(s, :)TnH(s, :)H , s ∈ Θ

else if (α==‘t’)
Tn := (INr

n+1
ρt,n+1

+ HnHH
n )−1

Δs := H(:, s)HTnH(:, s), s ∈ Θ

end
end
Return HΩ = Hn
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Fig. 1. Ergodic capacity VS. total power for d = 600m with receive selection

Figure 1 shows the ergodic capacity versus total power at
the distance d = 600m. It is easy to find that near-optimal
performance can be achieved by the proposed algorithm for
different power consumption P . In addition, it can be seen that
the proposed algorithm outperforms the conventional antenna
selection algorithm and the norm-based algorithm in [5].

Figure 2 demonstrates the performance of different algo-
rithms as a function of d for a given P . It can be seen that the
proposed algorithm achieves near-optimal performance over
all the transmission distances. Moreover, the gain over the
norm-based algorithm is more significant for the moderate
distance. It could be interpreted as follows. In low SNR
regimes, the capacity is limited by the power. Therefore the
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Fig. 2. Ergodic capacity VS. d with transmit selection.(P = 1500mW)

row or column with the largest norm is the best choice. In the
case of a large transmission distance, our proposed algorithm
reduces to the norm-based algorithm and thus achieves the
same performance. In high SNR regimes, the capacity is
limited by the spatial degrees of freedom. Now activating
more antennas is the best choice. Therefore as nearly all the
antennas are active in the case of a large total power and a
short distance, the gain over the norm-based algorithm isn’t
as significant as that for moderate distances.

V. CONCLUSION

An iterative algorithm has been developed to solve antenna
selection problem for multi-stream MIMO systems where the
circuit power consumption is considered. It can be adopted
at both the transmitting and receiving ends. It greatly reduces
the computational complexity yet with little performance loss
when compared to the exhaustive search method. In the future
work, we will extend the proposed algorithm to handle more
practical cases like MU-MIMO systems and joint antennas
selection.

APPENDIX A
PROOF OF LEMMA 1

For the (n + 1)th step, the corresponding SNR can be
obtained by

ρr,n+1 =
P

(r,n+1)
t

N0
=

ηpa(P − Pc0 −NtPct − (n+ 1)Pcr)

N0
,

(23)
where P

(r,n+1)
t = ηpa(P −Pc0 −NtPct − (n+1)Pcr). Thus,

with Eq. (2) the capacity is as follows

Cr(Hn+1) = log det(INt +
ρr,n+1

Nt
HH

n+1Hn+1). (24)

Noting that

HH
n+1Hn+1 = HH

n Hn + hshH
s (25)

and applying the matrix determinant lemma to Eq. (24), we
obtain that

Cr(Hn+1) = log det(INt +
ρr,n+1

Nt
HH

n Hn)+

log(1 +
ρr,n+1

Nt
hH
s (INt +

ρr,n+1

Nt
HH

n Hn)
−1hs)

(26)

The first item on the right-side of the Eq. (26) can be expressed
as Eq. (27) by using the generalization of matrix determinant
lemma

log det(INt +
ρr,n+1

Nt
HH

n Hn) = Cr(Hn)+

log det(In − ηpaPcr

N0Nt
Hn(INt +

ρr,n
Nt

HH
n Hn)

−1HH
n )

(27)

We denote log det(In − ηpaPcr

N0Nt
Hn(INt +

ρr,n

Nt
HH

n Hn)
−1HH

n )
by Dr(Hn). For the second item on the right-side of the Eq.
(26), we denote (INt

Nt

ρr,n+1
+ HH

n Hn)
−1 by Tr,n.

It’s worth noting that the development of the proof could be
degraded to that in [3] when the circuit power consumption is
not taken into account.

APPENDIX B
PROOF OF LEMMA 2

For the transmit antenna selection, the corresponding SNR
of the (n+ 1)th step can be obtained by

ρt,n+1 =
P

(t,n+1)
t

N0
=

ηpa(P − Pc0 −NrPcr − (n+ 1)Pct)

N0
,

(28)
where P

(t,n+1)
t = ηpa(P − Pc0 −NrPcr − (n+1)Pct). With

Eq. (2), the capacity of transmit antenna selection is as follows

Ct(Hn+1) = log det(INr +
ρt,n+1

n+ 1
Hn+1HH

n+1) (29)

we may adopt the similar methods of Eq. (26) and Eq. (27),
obtain that

Ct(Hn+1) = Ct(Hn)

+ log det(In −mnHH
n (INr +

ρt,n
n

HnHH
n )−1Hn)

+ log(1 +
ρt,n+1

n+ 1
hH
s (INr +

ρt,n+1

n+ 1
HnHH

n )−1hs),

(30)

where mn =
ρt,n

n − ρt,n+1

n+1 .
Using Tt,n and Dt(Hn) for simplification, the conclusion

of the lemma is verified. The selection is fedback to the
transmitter through a noiseless feedback channel.
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